4 research outputs found

    Application of a split-Cre system for high-capacity adenoviral vector amplification

    Get PDF
    Background and aims: High-capacity adenoviral vectors (HC-AdV) show extended DNA payload and stability of gene expression in vivo due to the absence of viral coding sequences. However, production requires methods to trans-complement viral proteins, usually through Helper Viruses (HV). The Cre/loxP system is frequently employed to remove the packaging signal in HV genomes, in order to avoid their encapsidation. However, chronic exposure to the Cre recombinase in packaging cells is detrimental. We have applied the dimerizable Cre system to overcome this limitation. Methods and results: Cre was split in two fragments devoid of recombinase function (N-terminal 244 and C-terminal 99 amino-acids). In one version of the system, interaction with both moieties was favored by rapamycin-dependent heterodimerization domains (DiCre). Other version contained only Cre sequences (oCre). We generated packaging cells and HVs expressing the complementary fragments and studied their performance for HC-AdV production. We found that both conformations avoided interference with the growth of packaging cells, and the oCre system was particularly suitable for HC-AdV amplification. Conclusions: The split-Cre system improves the performance of packaging cells and can reduce the time and cost of HC-AdV amplification up to 30% and 15%, respectively. This may contribute to the standardization of HC-AdV production

    Characterization of Novel Pathogenic Variants Leading to Caspase-8 Cleavage-Resistant RIPK1-Induced Autoinflammatory Syndrome

    Get PDF
    Pathogenic RIPK1 variants have been described as the cause of two different inborn errors of immunity. Biallelic loss-of-function variants cause the recessively inherited RIPK1 deficiency, while monoallelic variants impairing the caspase-8-mediated RIPK1 cleavage provoke a novel autoinflammatory disease (AID) called cleavage-resistant RIPK1-induced autoinflammatory (CRIA) syndrome. The aim of this study was to characterize the pathogenicity of two novel RIPK1 variants located at the cleavage site of caspase-8 detected in patients with dominantly-inherited, early-onset undefined AID. RIPK1 genotyping was performed by Sanger and next-generation sequencing. Clinical and analytical data were collected from medical charts, and in silico and in vitro assays were performed to evaluate the functional consequences. Genetic analyses identified two novel heterozygous RIPK1 variants at the caspase-8 cleavage site (p.Leu321Arg and p.Asp324Gly), which displayed a perfect intrafamilial phenotype-genotype segregation following a dominant inheritance pattern. Structural analyses suggested that these variants disrupt the normal RIPK1 structure, probably making it less accessible to and/or less cleavable by caspase-8. In vitro experiments confirmed that the p.Leu321Arg and p.Asp324Gly RIPK1 variants were resistant to caspase-8-mediated cleavage and induced a constitutive activation of necroptotic pathway in a similar manner that previously characterized RIPK1 variants causing CRIA syndrome. All these results strongly supported the pathogenicity of the two novel RIPK1 variants and the diagnosis of CRIA syndrome in all enrolled patients. Moreover, the evidences here collected expand the phenotypic and genetic diversity of this recently described AID, and provide interesting data about effectiveness of treatments that may benefit future patients

    Application of a split-Cre system for high-capacity adenoviral vector amplification

    No full text
    Background and aims: High-capacity adenoviral vectors (HC-AdV) show extended DNA payload and stability of gene expression in vivo due to the absence of viral coding sequences. However, production requires methods to trans-complement viral proteins, usually through Helper Viruses (HV). The Cre/loxP system is frequently employed to remove the packaging signal in HV genomes, in order to avoid their encapsidation. However, chronic exposure to the Cre recombinase in packaging cells is detrimental. We have applied the dimerizable Cre system to overcome this limitation. Methods and results: Cre was split in two fragments devoid of recombinase function (N-terminal 244 and C-terminal 99 amino-acids). In one version of the system, interaction with both moieties was favored by rapamycin-dependent heterodimerization domains (DiCre). Other version contained only Cre sequences (oCre). We generated packaging cells and HVs expressing the complementary fragments and studied their performance for HC-AdV production. We found that both conformations avoided interference with the growth of packaging cells, and the oCre system was particularly suitable for HC-AdV amplification. Conclusions: The split-Cre system improves the performance of packaging cells and can reduce the time and cost of HC-AdV amplification up to 30% and 15%, respectively. This may contribute to the standardization of HC-AdV production

    Characterization of novel pathogenic variants leading to caspase-8 cleavage-resistant RIPK1-induced autoinflammatory syndrome

    No full text
    Pathogenic RIPK1 variants have been described as the cause of two different inborn errors of immunity. Biallelic loss-of-function variants cause the recessively inherited RIPK1 deficiency, while monoallelic variants impairing the caspase-8-mediated RIPK1 cleavage provoke a novel autoinflammatory disease (AID) called cleavage-resistant RIPK1-induced autoinflammatory (CRIA) syndrome. The aim of this study was to characterize the pathogenicity of two novel RIPK1 variants located at the cleavage site of caspase-8 detected in patients with dominantly-inherited, early-onset undefined AID. RIPK1 genotyping was performed by Sanger and next-generation sequencing. Clinical and analytical data were collected from medical charts, and in silico and in vitro assays were performed to evaluate the functional consequences. Genetic analyses identified two novel heterozygous RIPK1 variants at the caspase-8 cleavage site (p.Leu321Arg and p.Asp324Gly), which displayed a perfect intrafamilial phenotype-genotype segregation following a dominant inheritance pattern. Structural analyses suggested that these variants disrupt the normal RIPK1 structure, probably making it less accessible to and/or less cleavable by caspase-8. In vitro experiments confirmed that the p.Leu321Arg and p.Asp324Gly RIPK1 variants were resistant to caspase-8-mediated cleavage and induced a constitutive activation of necroptotic pathway in a similar manner that previously characterized RIPK1 variants causing CRIA syndrome. All these results strongly supported the pathogenicity of the two novel RIPK1 variants and the diagnosis of CRIA syndrome in all enrolled patients. Moreover, the evidences here collected expand the phenotypic and genetic diversity of this recently described AID, and provide interesting data about effectiveness of treatments that may benefit future patients.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work has been partially funded by the following: Grants from the Spanish Ministry of Science, Innovation and Universities and co-funded by the European Regional Development Fund / Agencia Estatal de Investigación: RTI2018-096824-B-C21 (JIA); RTI2018-096824-B-C22 (FC); SAF2017-88276-R (PP). Grant from the Spanish Ministry of Science and Innovation / Agencia Estatal de Investigación (10.13039/501100011033): PID2020-116709RB-I00 (PP). Grant from Instituto de Salud Carlos III and co-funded by the European Union: PI19/01567 (AM-V). Grants from Fundación Séneca: 20859/PI/18 (PP); 21081/PDC/19 (PP); 0003/COVI/20 (PP). Grants from European Research Council: ERC-2013-CoG 614578 (PP); ERC-2019-PoC 899636 (PP
    corecore