14,334 research outputs found
TARGET: Rapid Capture of Process Knowledge
TARGET (Task Analysis/Rule Generation Tool) represents a new breed of tool that blends graphical process flow modeling capabilities with the function of a top-down reporting facility. Since NASA personnel frequently perform tasks that are primarily procedural in nature, TARGET models mission or task procedures and generates hierarchical reports as part of the process capture and analysis effort. Historically, capturing knowledge has proven to be one of the greatest barriers to the development of intelligent systems. Current practice generally requires lengthy interactions between the expert whose knowledge is to be captured and the knowledge engineer whose responsibility is to acquire and represent the expert's knowledge in a useful form. Although much research has been devoted to the development of methodologies and computer software to aid in the capture and representation of some types of knowledge, procedural knowledge has received relatively little attention. In essence, TARGET is one of the first tools of its kind, commercial or institutional, that is designed to support this type of knowledge capture undertaking. This paper will describe the design and development of TARGET for the acquisition and representation of procedural knowledge. The strategies employed by TARGET to support use by knowledge engineers, subject matter experts, programmers and managers will be discussed. This discussion includes the method by which the tool employs its graphical user interface to generate a task hierarchy report. Next, the approach to generate production rules for incorporation in and development of a CLIPS based expert system will be elaborated. TARGET also permits experts to visually describe procedural tasks as a common medium for knowledge refinement by the expert community and knowledge engineer making knowledge consensus possible. The paper briefly touches on the verification and validation issues facing the CLIPS rule generation aspects of TARGET. A description of efforts to support TARGET's interoperability issues on PCs, Macintoshes and UNIX workstations concludes the paper
Machine learning techniques to select Be star candidates. An application in the OGLE-IV Gaia south ecliptic pole field
Statistical pattern recognition methods have provided competitive solutions
for variable star classification at a relatively low computational cost. In
order to perform supervised classification, a set of features is proposed and
used to train an automatic classification system. Quantities related to the
magnitude density of the light curves and their Fourier coefficients have been
chosen as features in previous studies. However, some of these features are not
robust to the presence of outliers and the calculation of Fourier coefficients
is computationally expensive for large data sets. We propose and evaluate the
performance of a new robust set of features using supervised classifiers in
order to look for new Be star candidates in the OGLE-IV Gaia south ecliptic
pole field. We calculated the proposed set of features on six types of variable
stars and on a set of Be star candidates reported in the literature. We
evaluated the performance of these features using classification trees and
random forests along with K-nearest neighbours, support vector machines, and
gradient boosted trees methods. We tuned the classifiers with a 10-fold
cross-validation and grid search. We validated the performance of the best
classifier on a set of OGLE-IV light curves and applied this to find new Be
star candidates. The random forest classifier outperformed the others. By using
the random forest classifier and colour criteria we found 50 Be star candidates
in the direction of the Gaia south ecliptic pole field, four of which have
infrared colours consistent with Herbig Ae/Be stars. Supervised methods are
very useful in order to obtain preliminary samples of variable stars extracted
from large databases. As usual, the stars classified as Be stars candidates
must be checked for the colours and spectroscopic characteristics expected for
them
Light Scattering from Nonequilibrium Concentration Fluctuations in a Polymer solution
We have performed light-scattering measurements in dilute and semidilute
polymer solutions of polystyrene in toluene when subjected to stationary
temperature gradients. Five solutions with concentrations below and one
solution with a concentration above the overlap concentration were
investigated. The experiments confirm the presence of long-range nonequilibrium
concentration fluctuations which are proportional to , where
is the applied temperature gradient and is the wave number of
the fluctuations. In addition, we demonstrate that the strength of the
nonequilibrium concentration fluctuations, observed in the dilute and
semidilute solution regime, agrees with theoretical values calculated from
fluctuating hydrodynamics. Further theoretical and experimental work will be
needed to understand nonequilibrium fluctuations in polymer solutions at higher
concentrations.Comment: revtex, 16 pages, 7 figures. J. Chem. Phys., to appea
Exactly Solvable Hydrogen-like Potentials and Factorization Method
A set of factorization energies is introduced, giving rise to a
generalization of the Schr\"{o}dinger (or Infeld and Hull) factorization for
the radial hydrogen-like Hamiltonian. An algebraic intertwining technique
involving such factorization energies leads to derive -parametric families
of potentials in general almost-isospectral to the hydrogen-like radial
Hamiltonians. The construction of SUSY partner Hamiltonians with ground state
energies greater than the corresponding ground state energy of the initial
Hamiltonian is also explicitly performed.Comment: LaTex file, 21 pages, 2 PostScript figures and some references added.
To be published in J. Phys. A: Math. Gen. (1998
Ultrafast-pulse diagnostic using third-order frequency-resolved optical gating in organic films
We report on the diagnostic of ultrafast pulses by frequency-resolved optical gating (FROG) based on strong third-harmonic generation (THG) in amorphous organic thin films. The high THG conversion efficiency of these films allows for the characterization of sub-nanojoule short pulses emitting at telecommunication wavelengths using a low cost portable fiber spectrometer
Zero Temperature Phases of the Electron Gas
The stability of different phases of the three-dimensional non-relativistic
electron gas is analyzed using stochastic methods. With decreasing density, we
observe a {\it continuous} transition from the paramagnetic to the
ferromagnetic fluid, with an intermediate stability range () for the {\it partially} spin-polarized liquid. The freezing
transition into a ferromagnetic Wigner crystal occurs at . We
discuss the relative stability of different magnetic structures in the solid
phase, as well as the possibility of disordered phases.Comment: 4 pages, REVTEX, 3 ps figure
Beyond conventional factorization: Non-Hermitian Hamiltonians with radial oscillator spectrum
The eigenvalue problem of the spherically symmetric oscillator Hamiltonian is
revisited in the context of canonical raising and lowering operators. The
Hamiltonian is then factorized in terms of two not mutually adjoint factorizing
operators which, in turn, give rise to a non-Hermitian radial Hamiltonian. The
set of eigenvalues of this new Hamiltonian is exactly the same as the energy
spectrum of the radial oscillator and the new square-integrable eigenfunctions
are complex Darboux-deformations of the associated Laguerre polynomials.Comment: 13 pages, 7 figure
Third-order optical autocorrelator for time-domain operation at telecommunication wavelengths
We report on amorphous organic thin films that exhibit efficient third-harmonic generation at telecommunication wavelengths. At 1550 nm, micrometer-thick samples generate up to 17 µW of green light with input power of 250 mW delivered by an optical parametric oscillator. This high conversion efficiency is achieved without phase matching or cascading of quadratic nonlinear effects. With these films, we demonstrate a low-cost, sensitive third-order autocorrelator that can be used in the time-frequency domain
Quantum mechanical spectral engineering by scaling intertwining
Using the concept of spectral engineering we explore the possibilities of
building potentials with prescribed spectra offered by a modified intertwining
technique involving operators which are the product of a standard first-order
intertwiner and a unitary scaling. In the same context we study the iterations
of such transformations finding that the scaling intertwining provides a
different and richer mechanism in designing quantum spectra with respect to
that given by the standard intertwiningComment: 8 twocolumn pages, 5 figure
- …