14,334 research outputs found

    TARGET: Rapid Capture of Process Knowledge

    Get PDF
    TARGET (Task Analysis/Rule Generation Tool) represents a new breed of tool that blends graphical process flow modeling capabilities with the function of a top-down reporting facility. Since NASA personnel frequently perform tasks that are primarily procedural in nature, TARGET models mission or task procedures and generates hierarchical reports as part of the process capture and analysis effort. Historically, capturing knowledge has proven to be one of the greatest barriers to the development of intelligent systems. Current practice generally requires lengthy interactions between the expert whose knowledge is to be captured and the knowledge engineer whose responsibility is to acquire and represent the expert's knowledge in a useful form. Although much research has been devoted to the development of methodologies and computer software to aid in the capture and representation of some types of knowledge, procedural knowledge has received relatively little attention. In essence, TARGET is one of the first tools of its kind, commercial or institutional, that is designed to support this type of knowledge capture undertaking. This paper will describe the design and development of TARGET for the acquisition and representation of procedural knowledge. The strategies employed by TARGET to support use by knowledge engineers, subject matter experts, programmers and managers will be discussed. This discussion includes the method by which the tool employs its graphical user interface to generate a task hierarchy report. Next, the approach to generate production rules for incorporation in and development of a CLIPS based expert system will be elaborated. TARGET also permits experts to visually describe procedural tasks as a common medium for knowledge refinement by the expert community and knowledge engineer making knowledge consensus possible. The paper briefly touches on the verification and validation issues facing the CLIPS rule generation aspects of TARGET. A description of efforts to support TARGET's interoperability issues on PCs, Macintoshes and UNIX workstations concludes the paper

    Machine learning techniques to select Be star candidates. An application in the OGLE-IV Gaia south ecliptic pole field

    Full text link
    Statistical pattern recognition methods have provided competitive solutions for variable star classification at a relatively low computational cost. In order to perform supervised classification, a set of features is proposed and used to train an automatic classification system. Quantities related to the magnitude density of the light curves and their Fourier coefficients have been chosen as features in previous studies. However, some of these features are not robust to the presence of outliers and the calculation of Fourier coefficients is computationally expensive for large data sets. We propose and evaluate the performance of a new robust set of features using supervised classifiers in order to look for new Be star candidates in the OGLE-IV Gaia south ecliptic pole field. We calculated the proposed set of features on six types of variable stars and on a set of Be star candidates reported in the literature. We evaluated the performance of these features using classification trees and random forests along with K-nearest neighbours, support vector machines, and gradient boosted trees methods. We tuned the classifiers with a 10-fold cross-validation and grid search. We validated the performance of the best classifier on a set of OGLE-IV light curves and applied this to find new Be star candidates. The random forest classifier outperformed the others. By using the random forest classifier and colour criteria we found 50 Be star candidates in the direction of the Gaia south ecliptic pole field, four of which have infrared colours consistent with Herbig Ae/Be stars. Supervised methods are very useful in order to obtain preliminary samples of variable stars extracted from large databases. As usual, the stars classified as Be stars candidates must be checked for the colours and spectroscopic characteristics expected for them

    Light Scattering from Nonequilibrium Concentration Fluctuations in a Polymer solution

    Get PDF
    We have performed light-scattering measurements in dilute and semidilute polymer solutions of polystyrene in toluene when subjected to stationary temperature gradients. Five solutions with concentrations below and one solution with a concentration above the overlap concentration were investigated. The experiments confirm the presence of long-range nonequilibrium concentration fluctuations which are proportional to (T)2/k4(\nabla T)^2/k^4, where T\nabla T is the applied temperature gradient and kk is the wave number of the fluctuations. In addition, we demonstrate that the strength of the nonequilibrium concentration fluctuations, observed in the dilute and semidilute solution regime, agrees with theoretical values calculated from fluctuating hydrodynamics. Further theoretical and experimental work will be needed to understand nonequilibrium fluctuations in polymer solutions at higher concentrations.Comment: revtex, 16 pages, 7 figures. J. Chem. Phys., to appea

    Exactly Solvable Hydrogen-like Potentials and Factorization Method

    Get PDF
    A set of factorization energies is introduced, giving rise to a generalization of the Schr\"{o}dinger (or Infeld and Hull) factorization for the radial hydrogen-like Hamiltonian. An algebraic intertwining technique involving such factorization energies leads to derive nn-parametric families of potentials in general almost-isospectral to the hydrogen-like radial Hamiltonians. The construction of SUSY partner Hamiltonians with ground state energies greater than the corresponding ground state energy of the initial Hamiltonian is also explicitly performed.Comment: LaTex file, 21 pages, 2 PostScript figures and some references added. To be published in J. Phys. A: Math. Gen. (1998

    Ultrafast-pulse diagnostic using third-order frequency-resolved optical gating in organic films

    Get PDF
    We report on the diagnostic of ultrafast pulses by frequency-resolved optical gating (FROG) based on strong third-harmonic generation (THG) in amorphous organic thin films. The high THG conversion efficiency of these films allows for the characterization of sub-nanojoule short pulses emitting at telecommunication wavelengths using a low cost portable fiber spectrometer

    Zero Temperature Phases of the Electron Gas

    Get PDF
    The stability of different phases of the three-dimensional non-relativistic electron gas is analyzed using stochastic methods. With decreasing density, we observe a {\it continuous} transition from the paramagnetic to the ferromagnetic fluid, with an intermediate stability range (25±5rs35±525\pm 5 \leq r_s\leq 35 \pm 5) for the {\it partially} spin-polarized liquid. The freezing transition into a ferromagnetic Wigner crystal occurs at rs=65±10r_s=65 \pm 10. We discuss the relative stability of different magnetic structures in the solid phase, as well as the possibility of disordered phases.Comment: 4 pages, REVTEX, 3 ps figure

    Beyond conventional factorization: Non-Hermitian Hamiltonians with radial oscillator spectrum

    Full text link
    The eigenvalue problem of the spherically symmetric oscillator Hamiltonian is revisited in the context of canonical raising and lowering operators. The Hamiltonian is then factorized in terms of two not mutually adjoint factorizing operators which, in turn, give rise to a non-Hermitian radial Hamiltonian. The set of eigenvalues of this new Hamiltonian is exactly the same as the energy spectrum of the radial oscillator and the new square-integrable eigenfunctions are complex Darboux-deformations of the associated Laguerre polynomials.Comment: 13 pages, 7 figure

    Third-order optical autocorrelator for time-domain operation at telecommunication wavelengths

    Get PDF
    We report on amorphous organic thin films that exhibit efficient third-harmonic generation at telecommunication wavelengths. At 1550 nm, micrometer-thick samples generate up to 17 µW of green light with input power of 250 mW delivered by an optical parametric oscillator. This high conversion efficiency is achieved without phase matching or cascading of quadratic nonlinear effects. With these films, we demonstrate a low-cost, sensitive third-order autocorrelator that can be used in the time-frequency domain

    Quantum mechanical spectral engineering by scaling intertwining

    Full text link
    Using the concept of spectral engineering we explore the possibilities of building potentials with prescribed spectra offered by a modified intertwining technique involving operators which are the product of a standard first-order intertwiner and a unitary scaling. In the same context we study the iterations of such transformations finding that the scaling intertwining provides a different and richer mechanism in designing quantum spectra with respect to that given by the standard intertwiningComment: 8 twocolumn pages, 5 figure
    corecore