The eigenvalue problem of the spherically symmetric oscillator Hamiltonian is
revisited in the context of canonical raising and lowering operators. The
Hamiltonian is then factorized in terms of two not mutually adjoint factorizing
operators which, in turn, give rise to a non-Hermitian radial Hamiltonian. The
set of eigenvalues of this new Hamiltonian is exactly the same as the energy
spectrum of the radial oscillator and the new square-integrable eigenfunctions
are complex Darboux-deformations of the associated Laguerre polynomials.Comment: 13 pages, 7 figure