1,624 research outputs found

    Thermophoresis of Brownian particles driven by coloured noise

    Get PDF
    The Brownian motion of microscopic particles is driven by the collisions with the molecules of the surrounding fluid. The noise associated with these collisions is not white, but coloured due, e.g., to the presence of hydrodynamic memory. The noise characteristic time scale is typically of the same order as the time over which the particle's kinetic energy is lost due to friction (inertial time scale). We demonstrate theoretically that, in the presence of a temperature gradient, the interplay between these two characteristic time scales can have measurable consequences on the particle long-time behaviour. Using homogenization theory, we analyse the infinitesimal generator of the stochastic differential equation describing the system in the limit where the two characteristic times are taken to zero; from this generator, we derive the thermophoretic transport coefficient, which, we find, can vary in both magnitude and sign, as observed in experiments. Furthermore, studying the long-term stationary particle distribution, we show that particles can accumulate towards the colder (positive thermophoresis) or the warmer (negative thermophoresis) regions depending on the dependence of their physical parameters and, in particular, their mobility on the temperature.Comment: 9 pages, 4 figure

    Progress in use of carbon-black-polymer composite vapor detector arrays for land mine detection

    Get PDF
    Thin films of carbon black-organic polymer composites have been deposited across two metallic leads, with swelling- induced resistance changes of the films signaling the presence of vapors. To identify and classify vapors, arrays of such vapor sensing elements have been constructed. Each element contained a different organic polymer as the insulating phase. The differing gas-solid partition coefficients for the various polymers of the detector array produced a pattern of resistance changes that was used to classify vapors and vapor mixtures. The performance of this system towards DNT, the predominant signature in the vapor phase above land miens, has been evaluated in detail, with robust detection demonstrated in the laboratory in less than 5 s in air at DNT levels in the low ppb range

    A Wormhole at the core of an infinite cosmic string

    Get PDF
    We study a solution of Einstein's equations that describes a straight cosmic string with a variable angular deficit, starting with a 2π2 \pi deficit at the core. We show that the coordinate singularity associated to this defect can be interpreted as a traversible wormhole lodging at the the core of the string. A negative energy density gradually decreases the angular deficit as the distance from the core increases, ending, at radial infinity, in a Minkowski spacetime. The negative energy density can be confined to a small transversal section of the string by gluing to it an exterior Gott's like solution, that freezes the angular deficit existing at the matching border. The equation of state of the string is such that any massive particle may stay at rest anywhere in this spacetime. In this sense this is 2+1 spacetime solution.Comment: 1 tex file and 5 eps files. To be Published in Nov. in Phys.Rev.

    Progress in use of carbon-black-polymer composite vapor detector arrays for land mine detection

    Get PDF
    Thin films of carbon black-organic polymer composites have been deposited across two metallic leads, with swelling- induced resistance changes of the films signaling the presence of vapors. To identify and classify vapors, arrays of such vapor sensing elements have been constructed. Each element contained a different organic polymer as the insulating phase. The differing gas-solid partition coefficients for the various polymers of the detector array produced a pattern of resistance changes that was used to classify vapors and vapor mixtures. The performance of this system towards DNT, the predominant signature in the vapor phase above land miens, has been evaluated in detail, with robust detection demonstrated in the laboratory in less than 5 s in air at DNT levels in the low ppb range

    Scaling of the buckling transition of ridges in thin sheets

    Full text link
    When a thin elastic sheet crumples, the elastic energy condenses into a network of folding lines and point vertices. These folds and vertices have elastic energy densities much greater than the surrounding areas, and most of the work required to crumple the sheet is consumed in breaking the folding lines or ``ridges''. To understand crumpling it is then necessary to understand the strength of ridges. In this work, we consider the buckling of a single ridge under the action of inward forcing applied at its ends. We demonstrate a simple scaling relation for the response of the ridge to the force prior to buckling. We also show that the buckling instability depends only on the ratio of strain along the ridge to curvature across it. Numerically, we find for a wide range of boundary conditions that ridges buckle when our forcing has increased their elastic energy by 20% over their resting state value. We also observe a correlation between neighbor interactions and the location of initial buckling. Analytic arguments and numerical simulations are employed to prove these results. Implications for the strength of ridges as structural elements are discussed.Comment: 42 pages, latex, doctoral dissertation, to be submitted to Phys Rev

    Variational quantum Monte Carlo study of two-dimensional Wigner crystals: exchange, correlation, and magnetic field effects

    Full text link
    The two-dimensional Wigner crystals are studied with the variational quantum Monte Carlo method. The close relationship between the ground-state wavefunction and the collective excitations in the system is illustrated, and used to guide the construction of the ground-state wavefunction of the strongly correlated solid. Exchange, correlation, and magnetic field effects all give rise to distinct physical phenomena. In the absence of any external magnetic field, interesting spin-orderings are observed in the ground-state of the electron crystal in various two-dimensional lattices. In particular, two-dimensional bipartite lattices are shown not to lead necessarily to an antiferromagnetic ground-state. In the quantum Hall effect regime, a strong magnetic field introduces new energy and length scales. The magnetic field quenches the kinetic energy and poses constraints on how the electrons may correlate with each other. Care is taken to ensure the appropriate translational properties of the wavefunction when the system is in a uniform magnetic field. We have examined the exchange, intra-Landau-level correlation as well as Landau-level-mixing effects with various variational wavefunctions. We also determine their dependences on the experimental parameters such as the carrier effective mass at a modulation-doped semiconductor heterojunction. Our results, when combined with some recent calculations for the energy of the fractional quantum Hall liquid including Landau-level-mixing, show quantitatively that in going from nn-doping to pp-doping in GaAS/AlGaASGaAS/AlGaAS heterojunction systems, the crossover filling factor from the fractional quantum Hall liquid to the Wigner crystal changes from filling factor ν1/5\nu \sim 1/5 to ν1/3\nu \sim 1/3. This lends strong support to the claim that theComment: LaTex file, 14 figures available from [email protected]

    BVRI Light Curves for 29 Type Ia Supernovae

    Get PDF
    BVRI light curves are presented for 27 Type Ia supernovae discovered during the course of the Calan/Tololo Survey and for two other SNe Ia observed during the same period. Estimates of the maximum light magnitudes in the B, V, and I bands and the initial decline rate parameter m15(B) are also given.Comment: 17 pages, figures and tables are not included (contact first author if needed), to appear in the Astronomical Journa
    corecore