4,289 research outputs found

    Climate-dependent propagation of precipitation uncertainty into the water cycle

    No full text

    Negative refraction with tunable absorption in an active dense gas of atoms

    Full text link
    Applications of negative index materials (NIM) presently are severely limited by absorption. Next to improvements of metamaterial designs, it has been suggested that dense gases of atoms could form a NIM with negligible losses. In such gases, the low absorption is facilitated by quantum interference. Here, we show that additional gain mechanisms can be used to tune and effectively remove absorption in a dense gas NIM. In our setup, the atoms are coherently prepared by control laser fields, and further driven by a weak incoherent pump field to induce gain. We employ nonlinear optical Bloch equations to analyze the optical response. Metastable Neon is identified as a suitable experimental candidate at infrared frequencies to implement a lossless active negative index material.Comment: 10 pages, 9 figure

    USING CHOICE EXPERIMENTS TO ELICIT FARMERS PREFERENCES? FOR CROP AND HEALTH INSURANCE

    Get PDF
    A random utility discrete choice experiments is used to determine farmers' preferences for health insurance, crop insurance, and a product that switches some portion of crop insurance subsidy to health insurance premium subsidy with access to large-pool risk groups.Risk and Uncertainty,

    Examination of tidal flats. Vol. 2 A review of identified values

    Get PDF
    This report summarizes the available information from the literature concerning the physical, chemical and biological processes characteristic of the tidal flat habitat and suggests possible techniques for the evaluation of coastal wetlands types for management or scientific purposes. Companion to this volume is an evaluation methodology for assessing tidal flat ecological value

    Global soil moisture data derived through machine learning trained with in-situ measurements

    Get PDF
    Measurement(s) wetness of soil Technology Type(s) machine learning Factor Type(s) soil layer • temporal interval • geographic location Sample Characteristic - Environment soil Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.1479051

    Variability of soil moisture and sea surface temperatures similarly important for warm-season land climate in the community earth system model

    No full text
    Both sea surface temperatures (SSTs) and soil moisture (SM) can influence climate over land. This paper presents a comprehensive comparison of SM versus SST impacts on land climate in the warm season. The authors perform fully coupled ensemble experiments with the Community Earth System Model in which they prescribe SM or SSTs to the long-term median seasonal cycles. It is found that SM variability overall impacts warm-season land climate to a similar extent as SST variability, in the midlatitudes, tropics, and subtropics. Removing SM or SST variability impacts land climate means and reduces land climate variability at different time scales by 10%-50% (temperature) and 0%-10% (precipitation). Both SM- and SST-induced changes are strongest for hot temperatures (up to 50%) and for extreme precipitation (up to 20%). These results are qualitatively similar for the present day and the end of the twenty-first century. Removed SM variability affects surface climate through corresponding variations in surface energy fluxes, and this is controlled to first order by the land-atmosphere coupling strength and the natural SM variability. SST-related changes are partly controlled by the relation of local temperature or precipitation with the El Nino-Southern Oscillation. In addition, in specific regions SST-induced SM changes alter the "direct" SST-induced climate changes; on the other hand, SM variability is found to slightly affect SSTs in some regions. Nevertheless a large level of independence is found between SM-climate and SST-climate coupling. This highlights the fact that SM conditions can influence land climate variables independently of any SST effects and that (initial) soil moisture anomalies can provide valuable information in (sub)seasonal weather forecasts

    Inferring soil moisture memory from streamflow observations using a simple water balance model

    Get PDF
    Soil moisture is known for its integrative behavior and resulting memory characteristics. Soil moisture anomalies can persist for weeks or even months into the future, making initial soil moisture a potentially important contributor to skill in weather forecasting. A major difficulty when investigating soil moisture and its memory using observations is the sparse availability of long-term measurements and their limited spatial representativeness. In contrast, there is an abundance of long-term streamflow measurements for catchments of various sizes across the world. The authors investigate in this study whether such streamflow measurements can be used to infer and characterize soil moisture memory in respective catchments. Their approach uses a simple water balance model in which evapotranspiration and runoff ratios are expressed as simple functions of soil moisture; optimized functions for the model are determined using streamflow observations, and the optimized model in turn provides information on soil moisture memory on the catchment scale. The validity of the approach is demonstrated with data from three heavily monitored catchments. The approach is then applied to streamflow data in several small catchments across Switzerland to obtain a spatially distributed description of soil moisture memory and to show how memory varies, for example, with altitude and topography

    Effects of predation on Zostera marina L. seed abundance

    Get PDF
    Predator effects on Zostera marina L. seed abundance were studied in the York River, VA, USA, using enclosure and exclosure caging experiments. Seeds were placed in cages in two concurrent experiments. The first experiment was a predator exclosure experiment to test the effects of excluding predators, using a full predator exclosure cage, a partial exclosure top-only cage, a partial exclosure side-only cage and uncaged plots. The second experiment was a predator enclosure experiment, using two highly abundant macro-benthic predators in the Chesapeake Bay: the decapod crustacean Callinectes sapidus Rathbun and the sciaenid fish Micropogonias undulatus L. Additionally, two-week long trials of sequentially protected and exposed seeds were also performed. Replicate treatment plots were sampled by removing the top 5–10 cm of the sediment surface with a suction sampler and still viable seeds in each plot were counted. Full exclosure cages contained significantly higher numbers of seeds than the uncaged or partial caged treatments. Seed abundances in the C. sapidus enclosure cages were significantly less than the full exclusion cage, but not significantly different than the uncaged treatments. Seed abundances in the M. undulatus cages were not significantly different than the full exclusion cage. The least number of seeds were found in the uncaged and partial cage treatments. Results of the sequentially protected and exposed trials were similar to results from the one-week uncaged treatments. These experiments suggest that seed predation can affect the abundance of Z. marina seeds, possibly causing up to 65% of the seed losses observed in these experiments. Results suggest that seed predation has the potential to be an important force governing the sexual reproductive success and propagation of eelgrass beds and that the degree of seed loss via predation may be related to predator and primary food abundances

    Propagation of soil moisture memory to streamflow and evapotranspiration in Europe

    Get PDF
    As a key variable of the land-climate system soil moisture is a main driver of streamflow and evapotranspiration under certain conditions. Soil moisture furthermore exhibits outstanding memory (persistence) characteristics. Many studies also report distinct low frequency variations for streamflow, which are likely related to soil moisture memory. Using data from over 100 near-natural catchments located across Europe, we investigate in this study the connection between soil moisture memory and the respective memory of streamflow and evapotranspiration on different time scales. For this purpose we use a simple water balance model in which dependencies of runoff (normalised by precipitation) and evapotranspiration (normalised by radiation) on soil moisture are fitted using streamflow observations. The model therefore allows us to compute the memory characteristics of soil moisture, streamflow and evapotranspiration on the catchment scale. We find considerable memory in soil moisture and streamflow in many parts of the continent, and evapotranspiration also displays some memory at monthly time scale in some catchments. We show that the memory of streamflow and evapotranspiration jointly depend on soil moisture memory and on the strength of the coupling of streamflow and evapotranspiration to soil moisture. Furthermore, we find that the coupling strengths of streamflow and evapotranspiration to soil moisture depend on the shape of the fitted dependencies and on the variance of the meteorological forcing. To better interpret the magnitude of the respective memories across Europe, we finally provide a new perspective on hydrological memory by relating it to the mean duration required to recover from anomalies exceeding a certain threshold
    corecore