47 research outputs found

    Effects of NR1 splicing on NR1/NR3B-type excitatory glycine receptors

    Get PDF
    BACKGROUND: N-methyl-D-aspartate receptors (NMDARs) are the most complex of ionotropic glutamate receptors (iGluRs). Subunits of this subfamily assemble into heteromers, which – depending on the subunit combination – may display very different pharmacological and electrophysiological properties. The least studied members of the NMDAR family, the NR3 subunits, have been reported to assemble with NR1 to form excitatory glycine receptors in heterologous expression systems. The heterogeneity of NMDARs in vivo is in part conferred to the receptors by splicing of the NR1 subunit, especially with regard to proton sensitivity. RESULTS: Here, we have investigated whether the NR3B subunit is capable of assembly with each of the eight functional NR1 splice variants, and whether the resulting receptors share the unique functional properties described for NR1-1a/NR3. We provide evidence that functional excitatory glycine receptors formed regardless of the NR1 isoform, and their pharmacological profile matched the one reported for NR1-1a/NR3: glycine alone fully activated the receptors, which were insensitive to glutamate and block by Mg(2+). Surprisingly, amplitudes of agonist-induced currents showed little dependency on the C-terminally spliced NR1 variants in NR1/NR3B diheteromers. Even more strikingly, NR3B conferred proton sensitivity also to receptors containing NR1b variants – possibly via disturbing the "proton shield" of NR1b splice variants. CONCLUSION: While functional assembly could be demonstrated for all combinations, not all of the specific interactions seen for NR1 isoforms with coexpressed NR2 subunits could be corroborated for NR1 assembly with NR3. Rather, NR3 abates trafficking effects mediated by the NR1 C terminus as well as the N-terminally mediated proton insensitivity. Thus, this study establishes that NR3B overrides important NR1 splice variant-specific receptor properties in NR1/NR3B excitatory glycine receptors

    Residues at the tip of the pore loop of NR3B-containing NMDA receptors determine Ca2+ permeability and Mg2+ block

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Members of the complex N-methyl-D-aspartate receptor (NMDAR) subfamily of ionotropic glutamate receptors (iGluRs) conventionally assemble from NR1 and NR2 subunits, the composition of which determines receptor properties. Hallmark features of conventional NMDARs include the requirement for a coagonist, voltage-dependent block by Mg<sup>2+</sup>, and high permeability for Ca<sup>2+</sup>. Both Mg<sup>2+ </sup>sensitivity and Ca<sup>2+ </sup>permeability are critically dependent on the amino acids at the N and N+1 positions of NR1 and NR2. The recently discovered NR3 subunits feature an unprecedented glycine-arginine combination at those critical sites within the pore. Diheteromers assembled from NR1 and NR3 are not blocked by Mg<sup>2+ </sup>and are not permeable for Ca<sup>2+</sup>.</p> <p>Results</p> <p>Employing site-directed mutagenesis of receptor subunits, electrophysiological characterization of mutants in a heterologous expression system, and molecular modeling of the NMDAR pore region, we have investigated the contribution of the unusual NR3 N and N+1 site residues to the unique functional characteristics of receptors containing these subunits. Contrary to previous studies, we provide evidence that both the NR3 N and N+1 site amino acids are critically involved in mediating the unique pore properties. Ca<sup>2+ </sup>permeability could be rescued by mutating the NR3 N site glycine to the NR1-like asparagine. Voltage-dependent Mg<sup>2+ </sup>block could be established by providing an Mg<sup>2+ </sup>coordination site at either the NR3 N or N+1 positions. Conversely, "conventional" receptors assembled from NR1 and NR2 could be made Mg<sup>2+ </sup>insensitive and Ca<sup>2+ </sup>impermeable by equipping either subunit with the NR3-like glycine at their N positions, with a stronger contribution of the NR1 subunit.</p> <p>Conclusions</p> <p>This study sheds light on the structure-function relationship of the least characterized member of the NMDAR subfamily. Contrary to previous reports, we provide evidence for a critical functional involvement of the NR3 N and N+1 site amino acids, and propose them to be the essential determinants for the unique pore properties mediated by this subunit.</p

    Genome-Wide Analyses of Vocabulary Size in Infancy and Toddlerhood:Associations With Attention-Deficit/Hyperactivity Disorder, Literacy, and Cognition-Related Traits

    Get PDF
    Background: The number of words children produce (expressive vocabulary) and understand (receptive vocabulary) changes rapidly during early development, partially due to genetic factors. Here, we performed a meta–genome-wide association study of vocabulary acquisition and investigated polygenic overlap with literacy, cognition, developmental phenotypes, and neurodevelopmental conditions, including attention-deficit/hyperactivity disorder (ADHD). Methods: We studied 37,913 parent-reported vocabulary size measures (English, Dutch, Danish) for 17,298 children of European descent. Meta-analyses were performed for early-phase expressive (infancy, 15–18 months), late-phase expressive (toddlerhood, 24–38 months), and late-phase receptive (toddlerhood, 24–38 months) vocabulary. Subsequently, we estimated single nucleotide polymorphism–based heritability (SNP-h2) and genetic correlations (rg) and modeled underlying factor structures with multivariate models. Results: Early-life vocabulary size was modestly heritable (SNP-h2 = 0.08–0.24). Genetic overlap between infant expressive and toddler receptive vocabulary was negligible (rg = 0.07), although each measure was moderately related to toddler expressive vocabulary (rg = 0.69 and rg = 0.67, respectively), suggesting a multifactorial genetic architecture. Both infant and toddler expressive vocabulary were genetically linked to literacy (e.g., spelling: rg = 0.58 and rg = 0.79, respectively), underlining genetic similarity. However, a genetic association of early-life vocabulary with educational attainment and intelligence emerged only during toddlerhood (e.g., receptive vocabulary and intelligence: rg = 0.36). Increased ADHD risk was genetically associated with larger infant expressive vocabulary (rg = 0.23). Multivariate genetic models in the ALSPAC (Avon Longitudinal Study of Parents and Children) cohort confirmed this finding for ADHD symptoms (e.g., at age 13; rg = 0.54) but showed that the association effect reversed for toddler receptive vocabulary (rg = −0.74), highlighting developmental heterogeneity. Conclusions: The genetic architecture of early-life vocabulary changes during development, shaping polygenic association patterns with later-life ADHD, literacy, and cognition-related traits.</p

    A Field Guide to Pandemic, Epidemic and Sporadic Clones of Methicillin-Resistant Staphylococcus aureus

    Get PDF
    In recent years, methicillin-resistant Staphylococcus aureus (MRSA) have become a truly global challenge. In addition to the long-known healthcare-associated clones, novel strains have also emerged outside of the hospital settings, in the community as well as in livestock. The emergence and spread of virulent clones expressing Panton-Valentine leukocidin (PVL) is an additional cause for concern. In order to provide an overview of pandemic, epidemic and sporadic strains, more than 3,000 clinical and veterinary isolates of MRSA mainly from Germany, the United Kingdom, Ireland, France, Malta, Abu Dhabi, Hong Kong, Australia, Trinidad & Tobago as well as some reference strains from the United States have been genotyped by DNA microarray analysis. This technique allowed the assignment of the MRSA isolates to 34 distinct lineages which can be clearly defined based on non-mobile genes. The results were in accordance with data from multilocus sequence typing. More than 100 different strains were distinguished based on affiliation to these lineages, SCCmec type and the presence or absence of PVL. These strains are described here mainly with regard to clinically relevant antimicrobial resistance- and virulence-associated markers, but also in relation to epidemiology and geographic distribution. The findings of the study show a high level of biodiversity among MRSA, especially among strains harbouring SCCmec IV and V elements. The data also indicate a high rate of genetic recombination in MRSA involving SCC elements, bacteriophages or other mobile genetic elements and large-scale chromosomal replacements

    A Field Guide to Pandemic, Epidemic and Sporadic Clones of Methicillin-Resistant Staphylococcus aureus

    Get PDF
    In recent years, methicillin-resistant Staphylococcus aureus (MRSA) have become a truly global challenge. In addition to the long-known healthcare-associated clones, novel strains have also emerged outside of the hospital settings, in the community as well as in livestock. The emergence and spread of virulent clones expressing Panton-Valentine leukocidin (PVL) is an additional cause for concern. In order to provide an overview of pandemic, epidemic and sporadic strains, more than 3,000 clinical and veterinary isolates of MRSA mainly from Germany, the United Kingdom, Ireland, France, Malta, Abu Dhabi, Hong Kong, Australia, Trinidad & Tobago as well as some reference strains from the United States have been genotyped by DNA microarray analysis. This technique allowed the assignment of the MRSA isolates to 34 distinct lineages which can be clearly defined based on non-mobile genes. The results were in accordance with data from multilocus sequence typing. More than 100 different strains were distinguished based on affiliation to these lineages, SCCmec type and the presence or absence of PVL. These strains are described here mainly with regard to clinically relevant antimicrobial resistance- and virulence-associated markers, but also in relation to epidemiology and geographic distribution. The findings of the study show a high level of biodiversity among MRSA, especially among strains harbouring SCCmec IV and V elements. The data also indicate a high rate of genetic recombination in MRSA involving SCC elements, bacteriophages or other mobile genetic elements and large-scale chromosomal replacements

    Die delta-Unterfamilie der Glutamatrezeptoren

    No full text
    Die delta-Rezeptoren werden allein auf Grund von Sequenzhomologien zur Familie der ionotropen Glutamatrezeptoren gezählt. Eine mögliche Erklärung für die bisher nicht nachweisbare Ionenkanalfunktion der delta-Rezeptoren ist, dass bisher unbekannte akzessorische Proteine für die Bildung funktioneller Rezeptoren essentiell sind. Ein Ziel dieser Arbeit bestand daher darin, Interaktionspartner der Rezeptoren zu identifizieren. Des Weiteren wurden zur Identifikation möglicher funktioneller delta-Rezeptor-Domänen verschiedene Rezeptorchimären und -mutanten elektrophysiologisch charakterisiert. Es wurden eine Reihe weiterer deutlicher Hinweise erhalten, dass die meisten Domänen der delta-Rezeptoren für die Bildung funktioneller ligandenaktivierter Ionenkanäle ausgelegt sind und der Grund für die bisher nicht nachweisbare Funktion in der Ligandenbindedomäne liegt. Außerdem wurden funktionelle Domänen der Rezeptoren im Detail charakterisiert und mögliche Interaktionspartner identifiziert

    Effects of NR1 splicing on NR1/NR3B-type excitatory glycine receptors

    No full text
    Abstract Background N-methyl-D-aspartate receptors (NMDARs) are the most complex of ionotropic glutamate receptors (iGluRs). Subunits of this subfamily assemble into heteromers, which – depending on the subunit combination – may display very different pharmacological and electrophysiological properties. The least studied members of the NMDAR family, the NR3 subunits, have been reported to assemble with NR1 to form excitatory glycine receptors in heterologous expression systems. The heterogeneity of NMDARs in vivo is in part conferred to the receptors by splicing of the NR1 subunit, especially with regard to proton sensitivity. Results Here, we have investigated whether the NR3B subunit is capable of assembly with each of the eight functional NR1 splice variants, and whether the resulting receptors share the unique functional properties described for NR1-1a/NR3. We provide evidence that functional excitatory glycine receptors formed regardless of the NR1 isoform, and their pharmacological profile matched the one reported for NR1-1a/NR3: glycine alone fully activated the receptors, which were insensitive to glutamate and block by Mg2+. Surprisingly, amplitudes of agonist-induced currents showed little dependency on the C-terminally spliced NR1 variants in NR1/NR3B diheteromers. Even more strikingly, NR3B conferred proton sensitivity also to receptors containing NR1b variants – possibly via disturbing the "proton shield" of NR1b splice variants. Conclusion While functional assembly could be demonstrated for all combinations, not all of the specific interactions seen for NR1 isoforms with coexpressed NR2 subunits could be corroborated for NR1 assembly with NR3. Rather, NR3 abates trafficking effects mediated by the NR1 C terminus as well as the N-terminally mediated proton insensitivity. Thus, this study establishes that NR3B overrides important NR1 splice variant-specific receptor properties in NR1/NR3B excitatory glycine receptors.</p

    Fluency Disorders : Current Practices and Perspectives of Speech-Language Pathologists

    No full text
    Color poster with text, graphs, and images.The purpose of this study was to identify the speech-language pathologists' (SLPs) perspectives and knowledge of treating fluency disorders, as well as identifying the need for continuing education resources for fluency disorders.University of Wisconsin--Eau Claire Office of Research and Sponsored Programs
    corecore