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Abstract
Background: N-methyl-D-aspartate receptors (NMDARs) are the most complex of ionotropic
glutamate receptors (iGluRs). Subunits of this subfamily assemble into heteromers, which –
depending on the subunit combination – may display very different pharmacological and
electrophysiological properties. The least studied members of the NMDAR family, the NR3
subunits, have been reported to assemble with NR1 to form excitatory glycine receptors in
heterologous expression systems. The heterogeneity of NMDARs in vivo is in part conferred to the
receptors by splicing of the NR1 subunit, especially with regard to proton sensitivity.

Results: Here, we have investigated whether the NR3B subunit is capable of assembly with each
of the eight functional NR1 splice variants, and whether the resulting receptors share the unique
functional properties described for NR1-1a/NR3. We provide evidence that functional excitatory
glycine receptors formed regardless of the NR1 isoform, and their pharmacological profile matched
the one reported for NR1-1a/NR3: glycine alone fully activated the receptors, which were
insensitive to glutamate and block by Mg2+. Surprisingly, amplitudes of agonist-induced currents
showed little dependency on the C-terminally spliced NR1 variants in NR1/NR3B diheteromers.
Even more strikingly, NR3B conferred proton sensitivity also to receptors containing NR1b
variants – possibly via disturbing the "proton shield" of NR1b splice variants.

Conclusion: While functional assembly could be demonstrated for all combinations, not all of the
specific interactions seen for NR1 isoforms with coexpressed NR2 subunits could be corroborated
for NR1 assembly with NR3. Rather, NR3 abates trafficking effects mediated by the NR1 C
terminus as well as the N-terminally mediated proton insensitivity. Thus, this study establishes that
NR3B overrides important NR1 splice variant-specific receptor properties in NR1/NR3B
excitatory glycine receptors.

Background
Ionotropic glutamate receptors mediate most of the exci-
tatory neurotransmission in the vertebrate central nervous
system (CNS) [1]. Members of the complex subfamily of

NMDARs (N-methyl-D-aspartate receptors) require gly-
cine as a coagonist in addition to glutamate [2,3] and a
pre-depolarisation of the membrane to release their block
by Mg2+ ions [3,4]. Via this coincidence detection,
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NMDARs are thought to provide the molecular basis for
synaptic plasticity mechanisms like LTP and LTD [5,6],
which in turn underlie higher cognitive functions like
memory formation and learning. NMDARs assemble
from combinations of NR1, NR2, and NR3 subunits. In a
"conventional" NMDAR, two glycine-binding NR1 subu-
nits and two glutamate-binding NR2 subunits form a
tetrameric channel that – once activated – is highly perme-
able for Ca2+.

Recently, a novel type of "NMDA" receptor has been
described that involves the still poorly understood NR3
subunits. As shown by Chatterton et al., both NR3A and
NR3B assemble with NR1-1a to form receptors that are
fully activated by glycine alone [7]. The NR1-1a/NR3
diheteromers are neither blocked by Mg2+ nor permeable
for Ca2+ and desensitize rapidly if NR3A is present in the
complex [7]. The NR3B subunits have been shown to also
attenuate current amplitudes [8], and reduce Ca2+ perme-
ability of "conventional" NR1/NR2 receptors [9,10], but
whether they exist in the form of an excitatory NR1/NR3B
glycine receptor in vivo is still controversial.

NR1 as the compulsory subunit is expressed ubiquitously
in the CNS [3]. Alternative N- and C-terminal splicing
generates eight functional isoforms from the single gene
transcript [11,12]. N-terminally, exon 5 can be inserted at
position 173 [4], as indicated by the letter "b" (presence
of exon 5) or "a" (absence of exon 5) in the name of the
variant. NR1a splice variants lacking the encoded 21
amino acids are tonically inhibited by protons in the
range of physiological pH values [13-15]. Splicing within
exons 21 and 22 (coding the C-terminal cassettes C1 and
C2, respectively) generates four different C-terminal vari-
ants: Deletion of exon 21 removes 111 base pairs (bp) in
the C-terminal domain of NR1–2, but leaves the far C ter-
minus (encoded by exon 22) identical to that of NR1-1.
The use of an alternative splice acceptor site in exon 22
deletes 356 bp, including the stop codon, and transfers 66
bp of the previously untranslated 3' region to coding
sequence (C2' cassette). Thus, exon 20 (in NR1–4) or
exon 21 (in NR1–3) are followed by the 3'-end of exon 22
and the alternative C terminus encoded by a stretch of pre-
viously untranslated sequence [4,11,12,16-18].

Efficiency of export from the endoplasmatic reticulum
(ER) differs for the C-terminal variants. The C1 cassette
features an ER retention motif, impeding surface expres-
sion of NR1-1 and NR1–3 isoforms. In the case of NR1–3
variants, lower export efficiency might be compensated by
the presence of a PDZ binding motif in the C2' cassette
and the subsequent interaction with PDZ proteins. As nei-
ther NR1–2 nor NR1–4 contain the C1 cassette, none fea-
tures the retention signal, and NR1–4 in addition has the
C2'cassette PDZ interacting motif [19-21]. Evidence exists

for a region-specific localization of NR1 splice variants in
the rodent brain [22,23], but there is also considerable
overlap in the expression of mRNA for the different iso-
forms. Strikingly, high expression of NR1b variants has
been reported in structures associated with motor control
[22], while NR3B has been shown to be highly expressed
(and possibly restricted to) somatic motor neurons [8].

The functional heterogeneity of conventional NR1/NR2-
containing NMDARs, which is in part conferred to the
receptor via the NR1 subunit, consequentially raises the
question about a potentially splice variant-specific inter-
action of NR1 with NR3. Although a recent study on a lim-
ited subset of NR1"a" variants suggests functional
assembly with NR3A and NR3B [24], the most extensively
characterized diheteromer features the NR1-1a isoform.
Considering the impaired ER export of particularly the
NR1-1a splice variant and the resulting poor membrane
insertion, the reported glycine receptors featuring this
NR1 isoform might be of limited relevance in vivo. We
therefore asked whether NR3 is capable of assembly with
each of the eight functional NR1 splice variants, and if so,
whether the resulting receptors share the unique func-
tional properties described for NR1-1a/NR3.

Methods
Accession numbers
The following clones were used: NR1-1a (Gen-
Bank:U08261), NR1-1b (GenBank:U08263), NR1–2a
(GenBank:U08262), NR1–2b (GenBank:U08264), NR1–
3a (GenBank:U08265), NR1–3b (GenBank:U08266),
NR1–4a (GenBank:U08267), NR1–4b (Gen-
Bank:U08268), NR2B (GenBank:U11419), NR3B (Gen-
Bank:NM130455).

cRNA synthesis
cRNA synthesis was performed as described previously
[25]. Briefly, cRNA was synthesized from 1 μg of linear-
ized DNA using an in vitro transcription kit (Fermentas)
with a modified protocol employing 400 μM GpppG (GE
Healthcare, Freiburg, Germany) for capping and an
extended reaction time of 3 h with T7 polymerase.

Electrophysiological measurements in Xenopus laevis 
oocytes
Oocytes of Xenopus laevis frogs (Nasco, Fort Atkinson, WI)
were surgically removed from the ovaries and defollicu-
lated as described previously [25]. They were maintained
in Barth's solution supplemented with 100 μg/ml gen-
tamicin, 40 μg/ml streptomycin, and 63 μg/ml penicillin.
Selected oocytes of stages V-VI were injected with 6 pmol
of cRNA for each receptor subunit (NR1 to NR3 ratio: 1:1;
NR1 to NR2 ratio: 1:1; both cRNAs were mixed before
injection in a standard volume) using a nanoliter injector
(World Precision Instruments, Sarasota, FL). Four to 6
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days after injection [12], oocyte current responses were
recorded in normal frog Ringer's solution (NFR) (115 mM
NaCl, 2.5 mM KCl, 1.8 mM CaCl2, and 10 mM HEPES-
NaOH, pH 7.2) under voltage clamp at -70 mV holding
potential with a TurboTec 10CX amplifier (npi Electronic,
Tamm, Germany) controlled by Pulse software (HEKA
Elektronik, Lambrecht, Germany). Recording pipettes
were pulled from borosilicate glass (Hilgenberg, Malsfeld,
Germany). Voltage electrodes had resistances of 0.5–1
MΩ and were filled with 3 M KCl; current electrodes had
resistances of 0.5–1 MΩ and were filled with 3 M CsCl.
Agonists and antagonists (300 μM glutamate, 10 μM gly-
cine, 0.5 mM Mg2+, 5 μM CNQX, 100 μM kynurenic acid)
were prepared in NFR and applied for 20 s by superfusion
at a flow rate of 5 ml/min. Agonist concentrations were
chosen to ensure maximal activation of both types of
diheteromers, while keeping parameters constant for both
types of receptors: For NR1/NR2 diheteromers, saturation
is reached around 150 μM glutamate and 10 μM glycine
[12], whereas NR3B-containing diheteromers desensitize
at glycine concentrations above 10 μM [7]. Exemplary
recordings for NR1–3a and NR1–3b with NR2B corrobo-
rated these values for our experimental design: applica-
tion of four different glutamate concentrations (50 μM,
100 μM, 300 μM, 500 μM, each together with 10 μM gly-
cine) did not lead to significantly different current ampli-
tudes (n = 5/combination, data not shown). On the other
hand, increasing the concentration of glycine from 10 μM
to 150 μM reduced current responses of NR1/NR3B
diheteromers approximately two- to threefold (for NR1–
3a/NR3B: IGly150/Gly10 = 0,47 ± 0,19; for NR1–3b/NR3B:
IGly150/Gly10 = 0,32 ± 0,05, n = 5).

Current-voltage relationships were determined between -
150 mV and +50 mV and corrected for background con-
ductivities. Data presented here are reported as mean ±
SEM. Statistical significance was determined with an
unpaired Student's t-test. For potentiation factors (Fig. 1A,
C), error bars include the Gaussian error propagation. For
normalization, amplitudes of single oocytes were divided
by the mean amplitudes of an appropriate reference sub-
unit combination, calculated separately for each agonist
or antagonist. The reference combination (e.g., the NR1-
1a-containing diheteromer) thereby is set to the value "1",
and all other amplitudes are given relative to this.

Results
Excitatory glycine receptors can form with each functional 
NR1 splice variant
To address the question whether NR3B can interact with
each of the functional NR1 splice variants to form an exci-
tatory glycine receptor, we coexpressed each NR1 variant
separately and together with either NR2B or NR3B in
Xenopus laevis oocytes. The "conventional" NR1/NR2
heteromers in all cases gave robust current responses

upon coapplication of glutamate and glycine (Fig. 1B).
Significantly smaller current responses were measured
when either agonist was applied alone. The same agonist
profile was recorded when NR1 subunits were expressed
alone (Fig. 1B). However, when NR1 was expressed
together with NR3B, glycine alone was able to fully acti-
vate the receptors, regardless of the NR1 splice variant
involved. By contrast, glutamate alone was not able to
elicit any current responses from any NR1/NR3B heter-
omers (Fig. 1B). Addition of glutamate in the presence of
glycine had no potentiating effect on current responses:
the ratio of glycine-induced currents to glutamate/glycine-
induced responses (IGly/IGlu/Gly) was close to 1 for all
splice variants tested (Fig. 1A). The IGly/IGlu/Gly ratio of
"conventional" NR1/NR2 combinations and separately
expressed NR1 subunits was significantly lower and
ranged between 0.01 for NR1-1a and 0.1 for NR1–3a (Fig.
1A).

To confirm that glycine-induced currents were indeed
mediated by NR1/NR3 diheteromers, we extended the
pharmacological characterization for the exemplary com-
binations of both NR1–3a and NR1–3b with either NR2B
or NR3B. As described previously [7], desensitization of
NR1/NR3 diheteromers occurred at glycine concentra-
tions above 10 μM for both NR1 splice variants tested
(data not shown, but see Methods section for values). This
effect was not seen for NR1/NR2 diheteromers (data not
shown). Furthermore, we tested two antagonists to con-
firm the formation of NR1/NR3 receptors. In these recep-
tors, glycine binding to NR3 promotes channel opening
(even if NR1 is unliganded [26]), while glycine binding to
NR1 induces current decay [27]. Antagonists acting at
either of the subunits therefore have a differential effect
on the net response of the heteromer, a property we con-
firmed in the present study: CNQX, which binds to NR3
[27,28], blocked glycine-induced current responses of
both NR1–3a/NR3B and NR1–3b/NR3B in agreement
with previous studies [27], but displayed only weak effects
on NR1–3a/NR2B and NR1–3b/NR2B receptors (Tab. 1).
D-serine, a co-agonist of conventional NMDARs [29], also
inhibited glycine-induced current responses of NR1–3a/
NR3B diheteromers, as described previously for NR1–1a/
NR3 [7]. Upon addition of 500 μM D-serine, glycine-
induced current responses of NR1–3a/NR3B receptors
were reduced by approximately 95% (IGly = 592.2 ± 91.5
nA; IGly+D-Ser = 30.7 ± 5.9 nA, n = 13).

The NR1 glycine-site antagonist kynurenic acid, on the
other hand, inhibited glycine-induced currents of NR1/
NR3B receptors at low glycine concentrations (10 μM gly-
cine, 100 μM kynurenic acid), but potentiated responses
at higher agonist concentrations (150 μM glycine, 100 μM
kynurenic acid) (Tab. 1). This pharmacological profile is
unique for NR3-containing diheteromers, and in good
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Comparison of agonist-induced currents for all NR1 splice variant/NR3B combinationsFigure 1
Comparison of agonist-induced currents for all NR1 splice variant/NR3B combinations. A. Ratio of current 
responses elicited by application of glycine (10 μM, Gly) and glycine plus glutamate (300 μM, Glu) for NR1 subunits expressed 
alone, NR1/NR2B heteromers, and NR1/NR3B heteromers. Data shown here are mean values ± SEM, n = 10–23 from 2–5 
independent experiments per combination; *p < 0.05; **p < 0.01; ***p < 0.005 (Student's t-test). B. Representative current 
traces of diheteromers, shown exemplary for combinations with NR1–3a. Black bars denote agonist application.
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agreement with previous studies employing the kynurenic
acid derivatives 7-CKA and 5,7-DCKA [26,27]. We did not
observe significant differences for NR1a and NR1b vari-
ants for either of the agonist/antagonist combinations
tested here.

The specific interaction with NR1 splice variants differs for 
NR2B and NR3B
The finding that NR3B is generally able to functionally
interact with each NR1 splice variant prompted the ques-
tion whether the current response of the NR1/NR3 heter-
omer is dependent on the C-terminal splicing of NR1 in
the same manner as that of the conventional NR1/NR2
receptor. In "conventional" NMDARs, glutamate/glycine-
mediated current amplitudes showed a dependence on
the size of the C-terminal NR1 splice variant. Current lev-
els increased along the sequence NR1-1 < NR1–2 < NR1–
3 < NR1–4. Splice variants lacking exon 5 (NR1a variants)
are tonically inhibited by protons at physiological pH val-
ues. Therefore, under the experimental conditions used,
NR1a variants gave rise to generally lower current ampli-
tudes, but showed the same dependence of amplitudes on
the NR1 C terminus (Fig. 2A, upper diagram).

By contrast, amplitudes of glutamate/glycine-induced
responses of NR1/NR3B receptors displayed a different
pattern of dependency on the C-terminally spliced NR1
variants. To standardize conditions, and for better com-
parison, we here present currents measured after co-appli-
cation of glutamate and glycine for all diheteromers. As
NR1/NR3B receptors are fully activated by glycine, the
additional presence of glutamate should not influence
currents induced by application of glycine alone. Potenti-
ation of current responses upon addition of glutamate
occured only in oocyte batches with high expression levels
of XenNR2B (see below). These batches were excluded
from quantitative comparison of current amplitudes; fur-

thermore, all subunit combinations were measured in the
same batches. Compared to the NR1-1a/NR3B receptor,
statistically significant differences in current amplitudes
were only observed for NR1-1b, NR1–3a, NR1–3b and
NR1–4b. However, when compared to receptors featuring
NR1-1a/NR2B, the NR1–3a/NR3B receptor was the only
diheteromer displaying a similar increase in the relative
current size (rel. increase in amplitudes compared to NR1-
1a-containing heteromers: 3.78 ± 0.68 for NR1–3a/NR2B;
5.63 ± 0.76 for NR1–3a/NR3B; Fig. 2A).

Strikingly, the proton-dependent difference between
NR1a and NR1b variants seen for current amplitudes of
NR1/NR2 receptors could not be corroborated for all
NR1/NR3B combinations (Fig. 2B). Significant differ-
ences were only seen for NR1-1/NR3B (with a factor of 0.5
between NR1a- and NR1b-containing receptors) and
NR1–4/NR3B (factor: 2.3).

NR3B-containing diheteromers are proton sensitive, 
regardless of the N-terminal NR1 isoform
The main difference between the N-terminal NR1 variants
is their susceptibility to proton inhibition. As the influ-
ence of the NR1a and NR1b variants differed dramatically
in complexes with NR2B and NR3B, we suspected that
NR3B might interfere with proton inhibition. We chose
the NR1–3a and NR1–3b subunits and compared current
responses after the application of glutamate and glycine at
three different pH values (pH 6.6, 7.2 and 8.0). As
depicted in figure 2C, agonist-induced current responses
of the NR1–3a subunit – expressed alone or together with
either NR2B or NR3B – significantly increased with the
pH value. By contrast, altered proton concentrations did
not yield significantly different current responses if NR1–
3b was expressed alone or together with NR2B. However,
if NR1–3b and NR3B were coexpressed, agonist induced
current responses increased with higher pH values, regard-

Table 1: Antagonistic block of glycine-induced currents of exemplary diheteromers

Agonist/antagonist
(all conc. μM)

10 Gly/5 CNQX 10 Gly/100 KynA 150 Gly/100 KynA

block of glycine-induced current response in % ± SEM

NR1–3a/NR2B 10.3 ± 3.3 39.4 ± 1.6 47.5 ± 3.3

NR1–3b/NR2B 10.9 ± 5.8 29.4 ± 6.5 30.5 ± 5.1

block of glycine-induced current response in % ± SEM

NR1–3a/NR3B 87.1 ± 1.7 84.6 ± 1.3 -244.9 ± 48.5

NR1–3b/NR3B 84.4 ± 1.5 82.1 ± 1.5 -263.9 ± 60.9

Overview of the block of glycine-induced current responses by CNQX and kynurenic acid (KynA) for exemplary NMDAR subunit combinations. 
Differences between NR1a- and NR1b- containing diheteromers are not statistically significant. n = 5 for each combination.
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less of the presence of an NR1b isoform, suggesting that
all NR3B-containing diheteromers are proton-sensitive.

All NR3B-containing diheteromers are insensitive to block 
by Mg2+ ions
NR1/NR3 diheteromers have been described to lower sen-
sitivity to block by Mg2+ ions compared to "conventional"
NR1/NR2 NMDARs. We have asked whether this is true
for heteromeric combinations with each of the eight func-
tional splice variants of NR1. We therefore tested the Mg2+

block of glycine- and glutamate/glycine-induced currents
for all possible NR1/NR3B combinations. Shown in figure
3A (upper diagram) is the current-voltage relationship
(IV) of the "conventional" NMDAR composed of NR1–

3b/NR2B. Below -65 mV, agonist-induced currents were
almost completely blocked in the presence of 0.5 mM
Mg2+. For the NR1/NR3B diheteromer the block was less
pronounced, and almost non-existent if only glycine was
applied (compare Fig. 3A, middle and lower diagrams).
The same held true for all possible combinations of NR3B
with NR1 splice variants (IV's not shown). The Mg2+ block
at -70 mV is depicted in figure 3B for all NR1/NR3B heter-
omers in comparison to NR1 expressed alone and "con-
ventional" NR1/NR2B receptors. Note that the extent of
block for NR1/NR3B receptors varied between 12.9 ±
3.4% with NR1–4a and 49.4 ± 7.3% with NR1-1a. How-
ever, this cannot be attributed to a specific influence of
NR1 variants on NR3B-containing NMDARs, but rather

Comparison of glutamate/glycine-induced steady-state current amplitudes for all NR1 isoforms with either NR2B or NR3BFigure 2
Comparison of glutamate/glycine-induced steady-state current amplitudes for all NR1 isoforms with either 
NR2B or NR3B. A. Relative current responses for each of the eight NR1 splice variants coexpressed with NR2B (upper 
panel) or NR3B (lower panel). Amplitudes were normalized to the responses mediated by NR1-1a/NR2B and NR1-1a/NR3B, 
respectively. All currents were recorded after the application of 300 μM glutamate and 10 μM glycine. Data shown here are 
mean values ± Gaussian error propagation, n = 6–10 from 2 independent experiments per combination. B. Current potentia-
tion by the N-terminal NR1b splice variants over NR1a variants when coexpressed with either NR2B (light grey) or NR3B 
(dark grey). Responses of the NR1a variants were independently set to 1 and responses mediated by NR1b variants were nor-
malized to the responses of the respective NR1a variants. Data are mean values ± Gaussian error propagation, n = 6–10 from 
2 independent experiments per combination. ns = not significant. C. Relative glutamate/glycine-induced current responses of 
NR1–3a- and NR1–3b-containing NMDARs depending on the pH value. Current responses were normalized to the values 
measured at pH 7.2. Data are mean values ± Gaussian error propagation, n = 6. alone = expressed alone; ns = not significant.
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Figure 3 (see legend on next page)
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constitutes a peculiarity of the oocyte expression system.
As has been shown recently [30], homomerically
expressed exogenous NR1 assembles with the endogenous
XenNR2B subunit in oocytes to form functional NMDARs
with properties similar to receptors from exogenous,
mammalian NR1/NR2 subunits.

In the case of coexpressed NR1 and NR3B in oocytes, the
presence of an additional, endogenous, glutamate-bind-
ing, Mg2+-sensitive subunit such as XenNR2B has the
potential to distort results. As shown in Fig. 3C for the
combination NR1–3b/NR3B, in oocyte batches with high
expression of XenNR2B, glycine-induced currents could
be potentiated by the addition of glutamate. This addi-
tional current could in turn be completely and reversibly
blocked by Mg2+, whereas the glycine-evoked fraction of
the response remained insensitive to Mg2+ ions (Fig. 3C).
Similar effects were seen with ifenprodil and APV (data
not shown). For the comparative study of Mg2+ block of
NR1/NR3B heteromers, it was not always possible to
choose oocyte batches with expression levels of XenNR2B
below detection threshold. Therefore, Mg2+ blocks are
even lower than depicted in Fig. 3C, and a quantitative
comparison between subunits cannot be performed.
However, with glycine as the sole agonist, the Mg2+-
induced block was considerably lower. The fractions of
currents blocked by Mg2+ in receptor complexes assem-
bled from NR3B and one of the eight NR1 splice variants
were as follows (in %): NR1-1a: 12.9 ± 5.3; NR1-1b: 16.7
± 5.0; NR1–2a: 12.6 ± 4.1; NR1–2b: 5.3 ± 5.3; NR1–3a:
3.1 ± 1.6; NR1–3b: 11.6 ± 4.1; NR1–4a: 10.5 ± 3.0; NR1–
4b: 9.8 ± 3.3, n = 11–18.

Discussion
NMDA receptors in vivo are at the molecular core of com-
plex cognitive functions, most prominently via their
involvement in LTP. Consequently, dysfunctional
NMDARs are implicated in various pathological condi-
tions. Most of the conventional NMDARs' functional
characteristics are governed by their unique coincidence

detection mechanism: the requirement of two agonists
plus a simultaneous voltage-dependent release of their
Mg2+ block for receptor activation. As NR3 alters each of
these critical traits by forming excitatory glycine receptors
with NR1, and as NR3 is potentially diverting NR1 from
classical NR1-NR2 NMDA receptors, the function of clas-
sical NMDARs will invariably be impacted.

Consequently, NR3B has been discussed to influence cell
death in the spinal cord [10] or specifically protect
somatic motoneurons [8] – cells that selectively succumb
to glutamatergic excitotoxicity in neurodegenerative dis-
orders like Amyotrophic Lateral Sclerosis (ALS). Along
this line, slightly impaired motor-learning has been
reported in NR3B-deficient mice [31].

The question whether NR1/NR3 receptors indeed have a
functional impact in vivo hinges on whether these diheter-
omers actually occur in vivo, a question that is not yet sat-
isfactorily answered. We contribute to the elucidation of
this matter by showing that NR3B is able to recruit every
single functional isoform of the NR1 subunit into a
diheteromer – rendering the occurrence of such receptors
in the vertebrate CNS very likely.

NR3B can functionally interact with all eight NR1 splice 
variants to form Mg2+-insensitive diheteromeric receptors
The NR1 isoforms are in part responsible for the heteroge-
neity of NMDAR properties in vivo: N-terminal splicing
determines proton sensitivity [13], while C-terminal
splice variants influence synaptic plasticity by modulating
activity-dependent trafficking of isoforms [32]. However,
the data presented here suggest this to be true only for the
"conventional" NR1/NR2 diheteromers. While the assem-
bly of NR1 and NR3 is well established for a limited set of
subunit combinations [7,24,33], we have for the first time
compared the interaction of NR3B with each of the eight
functional NR1 splice variants. In all cases functional
receptors assembled, which were fully activated by glycine
alone, but were insensitive to the addition of glutamate.

Comparison of the Mg2+ block of NR3B-containing diheteromers with each of the NR1 splice variantsFigure 3 (see previous page)
Comparison of the Mg2+ block of NR3B-containing diheteromers with each of the NR1 splice variants. A. Cur-
rent-voltage (IV) relationships for NR1–3b/NR2B (upper diagram, Glu/Gly-induced currents) and NR1–3b/NR3B (middle and 
lower diagrams for Glu/Gly- and Gly-induced currents, respectively) recorded between -150 mV and +50 mV. Recordings 
were performed in the presence of 300 μM glutamate (Glu) and/or 10 μM glycine (Gly) in the presence (dark grey traces) and 
absence (light grey traces) of 0.5 mM Mg2+. Traces represent averages from 4 experiments per combination (normalized to 
+20 mV). B. Comparison of the Mg2+ block of agonist-evoked current responses at -70 mV for each NR1 splice variant 
expressed alone, with NR2B, or with NR3B. Mean values ± SEM, n = 9–18 from 2–5 independent experiments per combina-
tion; *p < 0.05; **p < 0.01; ***p < 0.005 (Student's t-test). C. Exemplary potentiation by glutamate of glycine-induced NR1–3b/
NR3B receptor currents in oocytes with high expression levels of XenNR2B. Note that only the portion of current induced by 
additional glutamate is blocked by Mg2+. Current responses are mean values ± SEM normalized to the glycine-induced response 
(set to 100% and marked with #), n = 6. The inset shows a representative current trace from this batch recorded during 
sequential applications of agonists and Mg2+.
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Between splice variants, small differences were seen in the
IGly/IGlu/Gly ratios. However, these cannot necessarily be
attributed to the influence of the different NR1 isoforms.
Rather, small variations may result from the interaction of
the endogenously expressed XenNR2B subunit [30] with
exogenous NR1. The amount of XenNR2B varies for differ-
ent batches of oocytes, which likely explains the differ-
ences in IGly/IGlu/Gly ratios.

The influence of endogenous XenNR2B also effects the
extent of the Mg2+-block of NR1/NR3B diheteromers. Gly-
cine-induced current responses of NR1/NR3B receptors
were hardly blocked by Mg2+, which is in accordance with
previous studies on NR1-1a/NR3B receptors [7]. We have
shown here that there is no dependence of Mg2+ sensitivity
on the NR1 isoform. Rather, NR3B lowers Mg2+ sensitivity
of the diheteromeric receptors regardless of the NR1 vari-
ant. This finding is unsurprising, as the Mg2+ block
depends on residues within the pore region of NMDAR
subunits that do not differ for the eight NR1 splice vari-
ants.

The NR1 isoform-specific interaction with NR2B cannot 
be corroborated for NR3B
NR3 requires NR1 for export from the endoplasmatic
reticulum (ER) [34]. ER export, in turn, is dependent on
the C-terminus of the NR1 subunit, as has been shown for
conventional NR1/NR2 receptors [19,20]. Under the
standardized conditions of the heterologous expression
system, current amplitudes are determined by the number
of NMDARs in the cell membrane, and therefore the
export levels from the ER. For the conventional NR1/
NR2B heteromers, current levels increased as the size of
the NR1 C-terminus decreased, with the proton-inhibited
NR1a variants mediating generally smaller current ampli-
tudes at pH 7.2. The presence of NR3B instead of NR2B in
the diheteromer altered this dependency dramatically:
While some NR1 isoforms mediated current responses
that were statistically significantly larger compared to
NR1-1a, they range on a tenfold lower scale compared to
current responses at NR1/NR2 receptors. It therefore
remains questionable whether the observed variability is
of physiological relevance. Rather, NR3B appears to inter-
act comparably with all eight NR1 isoforms in terms of
trafficking efficiency. Interestingly, the largest agonist-
induced current responses were mediated by diheterom-
ers featuring the NR1–3 splice variants – the isoforms with
the lowest transcript levels in the developing and adult
rodent brain [22,23].

All NR3B-containing diheteromers are proton-sensitive
We have shown that the presence of NR3B in a diheter-
omer erases any differences in proton sensitivity between
NR1a and NR1b variants. In the conventional NR1/NR2B
receptor, the additional protein loop encoded by exon 5

of the NR1b subunits shields the proton-sensitive regions
[13,14,35,36], rendering the receptor insensitive to pro-
ton inhibition. Recent studies suggest the alignment of the
pore-lining regions of NR1 and NR3A to be structurally
distinct from that of NR1 and NR2 [37]. It is entirely con-
ceivable that even a slightly different assembly of NR1/
NR3 diheteromers compared to NR1/NR2 disturbs the
specific alignment of the protein loop encoded by exon 5
of NR1b and renders it ineffective as a proton shield.
Physiologically, this finding supports the general notion
of NR3 as a dominant-negative modulator of NMDAR
function [8,34,38]. Our data extend this notion to
diheteromers composed of NR1 and NR3B. If NR1/NR3
receptors exist in vivo, they will invariably be inhibited by
protons at physiological pH values, irrespective of the
NR1 isoform. This is especially interesting in the light of
mRNA expression patterns of the subunits concerned: in
the adult rodent brain, NR1b variants have been indicated
to be expressed more abundantly in cerebral subdivisions
and structures concerned with motor control and have
been suggested to play a role in motor coordination [23].
Interestingly, a similar role has been proposed for the
NR3B subunit, as its expression in the adult mouse is lim-
ited to somatic motor neurons of cranial nerve nuclei and
the anterior horn of the spinal cord [8]. Considering the
specific excitotoxic damage to motor areas and motoneu-
rons in certain pathological conditions, it is tempting to
speculate whether a tight regulation of NMDAR activity is
necessary in these areas and cells. Such a regulation could
be achieved by tonically inhibiting NMDARs at physio-
logical pH values.

Conclusion
A key feature of NMDARs is their heterogeneity in vivo. We
provide evidence that NR3B assembles with each NR1
splice variant to form functional receptors that share the
unique properties of excitatory glycine receptors described
for NR1-1a/NR3 diheteromers. However, the specific
functional properties determined by the NR1 isoform in
conventional NR1/NR2 receptors did not hold up for
assembly with NR3. By contrast, neither receptor traffick-
ing (mediated by the NR1 C terminus) nor insensitivity to
proton inhibition (mediated by an N-terminal structural
motif) are dependent on the NR1 isoform in NR1/NR3B
complexes. Rather, NR3B appears to override NR1 splice
variant-dependent effects. These results substantiate the
view of NR3B as a downregulator of agonist-induced
NMDAR current responses by establishing this subunit in
NR1/NR3B receptors as an "equalizer" of NMDAR action
through NR3B-mediated block of the proton insensitivity
normally conferred by NR1b splice variants. This suggests
that the precisely orchestrated NR1 variant-dependent
receptor properties are tempered in cells with high expres-
sion of NR3B in favor of a general dominant-negative
influence of this subunit. Future studies will have to take
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into consideration how this behavior affects trihetero-
meric (NR1/NR2/NR3) NMDARs.
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