68 research outputs found

    Automatic relevance source determination in human brain tumors using Bayesian NMF.

    Get PDF
    The clinical management of brain tumors is very sensitive; thus, their non-invasive characterization is often preferred. Non-negative Matrix Factorization techniques have been successfully applied in the context of neuro-oncology to extract the underlying source signals that explain different tissue tumor types, for which knowing the number of sources to calculate was always required. In the current study we estimate the number of relevant sources for a set of discrimination problems involving brain tumors and normal brain. For this, we propose to start by calculating a high number of sources using Bayesian NMF and automatically discarding the irrelevant ones during the iterative process of matrices decomposition, hence obtaining a reduced range of interpretable solutions. The real data used in this study come from a widely tested human brain tumor database. Simulated data that resembled the real data was also generated to validate the hypothesis against ground truth. The results obtained suggest that the proposed approach is able to provide a small range of meaningful solutions to the problem of source extraction in human brain tumors

    Predicting Decompensation Risk in Intensive Care Unit Patients Using Machine Learning

    Get PDF
    Patients in intensive care units (ICU) face the threat of decompensation, a rapid decline in health associated with a high risk of death. This study focuses on creating and evaluating machine learning (ML) models to predict decompensation risk in ICU patients. It proposes a novel approach using patient vitals and clinical data within a specified timeframe to forecast decompensation risk sequences. The study implemented and assessed long short-term memory (LSTM) and hybrid convolutional neural network (CNN)-LSTM architectures, along with traditional ML algorithms as baselines. Additionally, it introduced a novel decompensation score based on the predicted risk, validated through principal component analysis (PCA) and k-means analysis for risk stratification. The results showed that, with PPV=0.80, NPV=0.96 and AUC-ROC=0.90, CNN-LSTM had the best performance when predicting decompensation risk sequences. The decompensation score’s effectiveness was also confirmed (PPV=0.83 and NPV=0.96). SHAP plots were generated for the overall model and two risk strata, illustrating variations in feature importance and their associations with the predicted risk. Notably, this study represents the first attempt to predict a sequence of decompensation risks rather than single events, a critical advancement given the challenge of early decompensation detection. Predicting a sequence facilitates early detection of increased decompensation risk and pace, potentially leading to saving more live

    Extraction of artefactual MRS patterns from a large database using non-negative matrix factorization

    Get PDF
    Despite the success of automated pattern recognition methods in problems of human brain tumor diagnostic classification, limited attention has been paid to the issue of automated data quality assessment in the field of MRS for neuro-oncology. Beyond some early attempts to address this issue, the current standard in practice is MRS quality control through human (expert-based) assessment. One aspect of automatic quality control is the problem of detecting artefacts in MRS data. Artefacts, whose variety has already been reviewed in some detail and some of which may even escape human quality control, have a negative influence in pattern recognition methods attempting to assist tumor characterization. The automatic detection of MRS artefacts should be beneficial for radiology as it guarantees more reliable tumor characterizations, as well as the development of more robust pattern recognition-based tumor classifiers and more trustable MRS data processing and analysis pipelines. Feature extraction methods have previously been used to help distinguishing between good and bad quality spectra to apply subsequent supervised pattern recognition techniques. In this study, we apply feature extraction differently and use a variant of a method for blind source separation, namely Convex Non-Negative Matrix Factorization, to unveil MRS signal sources in a completely unsupervised way. We hypothesize that, while most sources will correspond to the different tumor patterns, some of them will reflect signal artefacts. The experimental work reported in this paper, analyzing a combined short and long echo time 1H-MRS database of more than 2000 spectra acquired at 1.5T and corresponding to different tumor types and other anomalous masses, provides a first proof of concept that points to the possible validity of this approach.Peer ReviewedPostprint (author's final draft

    How to Open a Black Box Classifier for Tabular Data

    Get PDF
    A lack of transparency in machine learning models can limit their application. We show that analysis of variance (ANOVA) methods extract interpretable predictive models from them. This is possible because ANOVA decompositions represent multivariate functions as sums of functions of fewer variables. Retaining the terms in the ANOVA summation involving functions of only one or two variables provides an efficient method to open black box classifiers. The proposed method builds generalised additive models (GAMs) by application of L1 regularised logistic regression to the component terms retained from the ANOVA decomposition of the logit function. The resulting GAMs are derived using two alternative measures, Dirac and Lebesgue. Both measures produce functions that are smooth and consistent. The term partial responses in structured models (PRiSM) describes the family of models that are derived from black box classifiers by application of ANOVA decompositions. We demonstrate their interpretability and performance for the multilayer perceptron, support vector machines and gradient-boosting machines applied to synthetic data and several real-world data sets, namely Pima Diabetes, German Credit Card, and Statlog Shuttle from the UCI repository. The GAMs are shown to be compliant with the basic principles of a formal framework for interpretability

    New use for an old drug: Metformin and atrial fibrillation.

    Get PDF
    Lal and colleagues1 reported an integrative approach-combining transcriptomics, iPSCs, and epidemiological evidence-to identify and repurpose metformin, a main first-line medication for the treatment of type 2 diabetes, as an effective risk reducer for atrial fibrillation

    Robust Conditional Independence maps of single-voxel Magnetic Resonance Spectra to elucidate associations between brain tumours and metabolites.

    Get PDF
    The aim of the paper is two-fold. First, we show that structure finding with the PC algorithm can be inherently unstable and requires further operational constraints in order to consistently obtain models that are faithful to the data. We propose a methodology to stabilise the structure finding process, minimising both false positive and false negative error rates. This is demonstrated with synthetic data. Second, to apply the proposed structure finding methodology to a data set comprising single-voxel Magnetic Resonance Spectra of normal brain and three classes of brain tumours, to elucidate the associations between brain tumour types and a range of observed metabolites that are known to be relevant for their characterisation. The data set is bootstrapped in order to maximise the robustness of feature selection for nominated target variables. Specifically, Conditional Independence maps (CI-maps) built from the data and their derived Bayesian networks have been used. A Directed Acyclic Graph (DAG) is built from CI-maps, being a major challenge the minimization of errors in the graph structure. This work presents empirical evidence on how to reduce false positive errors via the False Discovery Rate, and how to identify appropriate parameter settings to improve the False Negative Reduction. In addition, several node ordering policies are investigated that transform the graph into a DAG. The obtained results show that ordering nodes by strength of mutual information can recover a representative DAG in a reasonable time, although a more accurate graph can be recovered using a random order of samples at the expense of increasing the computation time

    Semi-supervised source extraction methodology for the nosological imaging of glioblastoma response to therapy.

    Get PDF
    Glioblastomas are one the most aggressive brain tumors. Their usual bad prognosis is due to the heterogeneity of their response to treatment and the lack of early and robust biomarkers to decide whether the tumor is responding to therapy. In this work, we propose the use of a semi-supervised methodology for source extraction to identify the sources representing tumor response to therapy, untreated/unresponsive tumor, and normal brain; and create nosological images of the response to therapy based on those sources. Fourteen mice were used to calculate the sources, and an independent test set of eight mice was used to further evaluate the proposed approach. The preliminary results obtained indicate that was possible to discriminate response and untreated/unresponsive areas of the tumor, and that the color-coded images allowed convenient tracking of response, especially throughout the course of therapy

    A comparative assessment of Feed-Forward and Convolutional Neural Networks for the classification of prostate lesions

    Get PDF
    Prostate cancer is the most common cancer in men in the UK. An accurate diagnosis at the earliest stage possible is critical in its treatment. Multi-parametric Magnetic Resonance Imaging is gaining popularity in prostate cancer diagnosis, it can be used to actively monitor low-risk patients, and it is convenient due to its non-invasive nature. However, it requires specialist knowledge to review the abundance of available data, which has motivated the use of machine learning techniques to speed up the analysis of these many and complex images. This paper focuses on assessing the capabilities of two neural network approaches to accurately discriminate between three tissue types: significant prostate cancer lesions, non-significant lesions, and healthy tissue. For this, we used data from a previous SPIE ProstateX challenge that included significant and non-significant lesions, and we extended the dataset to include healthy prostate tissue due to clinical interest. Feed-Forward and Convolutional Neural Networks have been used, and their performances were evaluated using 80/20 training/test splits. Several combinations of the data were tested under different conditions and summarised results are presented. Using all available imaging data, a Convolutional Neural Network three-class classifier comparing prostate lesions and healthy tissue attains an Area Under the Curve of 0.892
    corecore