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Abstract: Patients in intensive care units (ICU) face the threat of decompensation, a rapid decline 11 

in health associated with a high risk of death. This study focuses on creating and evaluating machine 12 
learning (ML) models to predict decompensation risk in ICU patients. It proposes a novel approach 13 
using patient vitals and clinical data within a specified timeframe to forecast decompensation risk 14 
sequences. The study implemented and assessed long short-term memory (LSTM) and hybrid 15 
convolutional neural network (CNN)-LSTM architectures, along with traditional ML algorithms as 16 
baselines. Additionally, it introduced a novel decompensation score based on the predicted risk, 17 
validated through principal component analysis (PCA) and k-means analysis for risk stratification. 18 
The results showed that, with PPV=0.80, NPV=0.96 and AUC-ROC=0.90, CNN-LSTM had the best 19 
performance when predicting decompensation risk sequences. The decompensation score’s 20 
effectiveness was also confirmed (PPV=0.83 and NPV=0.96). SHAP plots were generated for the 21 
overall model and two risk strata, illustrating variations in feature importance and their associations 22 
with the predicted risk. Notably, this study represents the first attempt to predict a sequence of 23 
decompensation risks rather than single events, a critical advancement given the challenge of early 24 
decompensation detection. Predicting a sequence facilitates early detection of increased 25 
decompensation risk and pace, potentially leading to saving more lives. 26 

Keywords: decompensation; risk prediction; intensive care unit; machine learning; deep learning; 27 
feature engineering; temporal data analysis; explainable artificial intelligence; clinical decision 28 
support 29 
 30 

1. Introduction 31 
Intensive Care Units (ICUs) are specialist hospital wards that provide treatment and 32 

monitoring to critically ill patients, where prompt identification of deteriorating patient 33 
health is paramount. Decompensation, marked by rapid health decline, poses severe risks 34 
and underscores the need for timely detection. Conventional methods often fall short, 35 
prompting exploration into advanced predictive techniques [1]. 36 

Predicting ICU decompensation events has been explored in several ways. For 37 
instance, Kia et al. [2] used Support Vector Machines (SVM), Random Forest (RF), and 38 
Logistic Regression (LR) to forecast decompensation events within ICUs. Their developed 39 
models were compared against the standard Modified Early Warning Score (MEWS). 40 
With an Area Under the Receiver Operating Characteristic Curve (AUC) of 0.85, they 41 
found RF presented the best overall performance. An alternative approach using Gradient 42 
Boosting Machines (GBMs) was proposed by Ruiz et al. [3]. Their approach showed an 43 
AUC of 0.92 at 4 hours, and 0.82 at 8 hours before the decompensation event occurred.  44 

Deep Learning (DL) algorithms have also been used for decompensation modelling 45 
in ICU. Thorsen-Meyer et al. [4] trained a Long Short-Term Memory (LSTM) neural 46 
network on static data and physiological time-series data sourced from the Danish 47 
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National Patient Registry, obtaining equivalent performance results. The use of DL is 48 
attractive as it can efficiently capture dynamic fluctuations in vitals and other clinical 49 
characteristics, thereby enhancing model performance.  50 

One major criticism of DL models has traditionally been their difficulty in explaining 51 
predictions, which is an essential requirement in medical research and healthcare 52 
applications. In recent years, there has been an increased effort to develop Explainable AI 53 
(xAI) algorithms specifically for DL models, particularly in health research. Ho et al. [5] 54 
combined Learned Binary Masks (LBM) with Kernel Shapely Additive exPlanations 55 
(KernelSHAP) values to explain Recurrent Neural Network (RNN) mortality risk 56 
prediction models in critically ill children using electronic medical records (EMR). 57 
Another approach, named Windowed Feature Importance in Time (WinIT) [6], 58 
encapsulates the changing importance of a feature over time, providing an aggregated 59 
understanding of its significance by cumulatively assessing feature importance over a 60 
window of preceding time steps.  61 

This study aims to develop and assess machine learning (ML) models for predicting 62 
the risk of decompensation events in patients admitted to ICU. Specifically, we propose a 63 
novel methodological approach that implements a sequence-to-sequence risk prediction 64 
task. It utilises a sequence of patient’s vitals and other clinical characteristics within a 65 
specified time window to forecast a decompensation risk sequence in a subsequent time 66 
window (i.e. forecast window). For this purpose, we considered two DL architectures: the 67 
many-to-many long short-term memory (LSTM) [7] and the hybrid convolutional neural 68 
network and LSTM (CNN-LSTM) [8].  69 

Our approach reflects the dynamic nature of patient decompensation, rather than 70 
treating it as a single event. We used the predicted sequence to propose a novel 71 
decompensation score. Additionally, predicting a sequence could enable earlier detection 72 
of decompensation, facilitating prompt intervention and potentially leading to improved 73 
patient outcomes. 74 

2. Materials and Methods 75 
2.1 Data extraction 76 

Data was extracted from the Medical Information Mart for Intensive Care IV 77 
(MIMIC-IV, [9]), a freely available database of de-identified electronic health records 78 
linked to patients admitted to the Beth Israel Deaconess Medical Centre in Boston, 79 
Massachusetts. We used version 2.2, released in January 2023, which comprises 299,712 80 
patients, 431,231 hospital admissions and 73,181 ICU stays.  81 

For this study, we extracted sequences of vitals (e.g., temperature, heart rate, and 82 
respiratory rate), lab test results (e.g., glucose, haemoglobin, and platelet count), and other 83 
clinical characteristics of the patients admitted to the hospital’s ICU (e.g., age, height and 84 
weight). Patients <18 years old, patient admissions with short ICU stays (<24 hours), and 85 
patients with multiple ICU stays were excluded from the study. Invalid values of the 86 
variables (e.g., heart rate < 0) were marked as not available. Variables recorded with 87 
different units were harmonised, e.g., height was present in inches and centimetres (cm), 88 
and they were all converted to cm. The data used for modelling was formatted as a three-89 
dimensional array, with dimensions representing patient admissions, time points (hours), 90 
and variables. 91 

As common in health data, extracted data records were frequently incomplete. 92 
Records with missing age, haemoglobin, platelet count, or oxygen saturation were 93 
removed from the dataset. For the remaining variables, missing values were handled as 94 
follows: for gaps in continuous-valued time series, the last observation carried forward 95 
(LOCF) method [10] was employed, while the mode was used to impute missing values 96 
in categorical variables. Time series with all values missing in a single admission were 97 
completed in the way described in [11].  98 

 99 
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2.2 Modelling methodology 100 

Our proposed decompensation risk prediction model implements a sequence-to-101 
sequence approach that processes sequences of clinical characteristics within a 24-hour 102 
input time window, predicting the risk of decompensation event every hour during a 24-103 
hour forecast period. We define the decompensation event as a 2-class problem (i.e. 104 
decompensation, no-decompensation), and predicting the risk of decompensation event 105 
as the problem of predicting the probability of such event to happen. A patient is coded 106 
as decompensating if they would be recorded as having died 24 hours later. This 107 
definition accounts for the fact that a patient is at high risk of dying at any time after a 108 
decompensation event has started. This is a more conservative approach than the one used 109 
in [11]. Two DL architectures were considered in the development of the sequence-to-110 
sequence risk prediction model: LSTM and hybrid CNN-LSTM. We propose a patient’s 111 
decompensation score, which is defined as the area under the predicted sequence of 112 
decompensation risk within the forecast window. For each patient, the decompensation 113 
score is calculated every hour after the 24-hour input window, using the 24-hour forecast 114 
window. This sliding window continues to move until the patient is discharged from the 115 
ICU. 116 

In addition, we developed baseline models based on traditional ML algorithms such 117 
as LR, SVM, and RF, although their task was modified since they are not designed for 118 
handling time series. Therefore, instead of predicting a time series, they were 119 
implemented to predict one decompensation event within the forecast period. Therefore, 120 
the sole purpose of these baseline models is to establish the minimum performance level 121 
against which the DL algorithms should be evaluated. 122 

Numerical variables were standardised (i.e. mean-centred and scaled by the standard 123 
deviation), whilst one-hot encoding was applied to the categorical variables. The 124 
methodological approach used in this study is illustrated in Figure 1. 125 

 
(a) 

 
(b) 

Figure 1. Methodological approach implemented for this study. (a) displays the input (e.g. 126 
vitals, lab tests, etc) sequences that the DL models take and the output (decompensation 127 
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risk) sequence that they forecast.  A decompensation score is calculated as the area under 128 
the decompensation risk sequence (b). 129 

2.2.1 Traditional ML algorithms 130 
The traditional ML algorithms LR, SVM, and RF were used as baseline models [12]. 131 

Widely used in statistics, LR estimates the log odds of the output as the linear combination 132 
of the input variables. SVM finds a hyperplane that best separates different classes in the 133 
feature space, maximising the margin between them. RF is an ensemble learning method 134 
that combines multiple decision trees to improve model performance and mitigate 135 
overfitting. These algorithms were used to perform the classification task of predicting the 136 
risk of decompensation within the 24-hour forecast window. However, since they cannot 137 
directly model time-series variables, they were trained on extracted hand-crafted 138 
statistical features from the input time series, i.e., mean, median, standard deviation, 139 
average absolute deviation (AAD), minimum and maximum values, interquartile range, 140 
peaks, differences between maximum and minimum values, median absolute deviation, 141 
and the count of values above the mean for each feature. 142 

2.2.2 DL algorithms 143 
DL algorithms were employed to model the risk of decompensation as a sequence-144 

to-sequence task. We chose two DL architectures, both designed for handling time series: 145 
many-to-many LSTM and CNN-LSTM. 146 

The Many-to-Many LSTM architecture is a type of recurrent neural network 147 
designed for sequence-to-sequence tasks [13]. It takes a sequence of input data and 148 
generates a corresponding sequence of output predictions, allowing for variable-length 149 
input and output sequences. 150 

The CNN-LSTM architecture has two identifiable stages: a channel-wise CNN and 151 
an LSTM stage [14]. The rationale behind this architecture is that the CNN stage processes 152 
sequential data with multiple channels, generating sequential outputs for each channel, 153 
whilst the LSTM stage integrates them to predict the sequence output. 154 

2.2.3 Model evaluation and hyperparameter tuning 155 
All models were evaluated in terms of their generalisation performance using a class-156 

stratified randomly selected test set, which accounted for 30% of the overall data. 157 
Traditional ML models were optimised by tuning their relevant hyperparameters through 158 
10-fold cross-validation on the remaining data. For the DL models,  hyperparameter 159 
tuning was performed using a randomly selected validation subset that constituted 20% 160 
of the remaining data. Table 1 displays the considered hyperparameter values.  161 

Model performance was measured using balanced accuracy, positive and negative 162 
predicted values (PPV and NPV), the area under the precision-recall curve (AUC-PR), the 163 
area under the receiver operating characteristic curve (AUC-ROC), and the Matthews 164 
correlation coefficient (MCC). The Youden's J statistic [15] was used to select the optimal 165 
ROC’s cut-off point. 166 

Table 1. Hyperparameter values for the different methods used. 167 

Method Hyperparameter Options 
SVM Kernel Radial basis, polynomial and sigmoid 

Technique Grid search cross-validation 
Gamma 1, 10, 0.1 and auto 

Cost 1, 0.1 and 0.01 
RF Bootstrap True, False 

Technique Randomised search cross-validation 
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Maximum Depth 10,20,30,40,50,60,70,80,90,100,110,None 

Max features Auto, sqrt 
Minimum leaf samples 1,2,4 
Minimum sample split 2,5,10 

Number of trees 200,400,600,800,1000,1200,1400,1600,1800,2000 
LSTM LSTM units 240,64,120 

Dropout Layers 0.5, none 
Dense Layers 180,100,24 

CNN-LSTM Conv1D Filters 80,128 
Dropout Layers 0.6, none, 0.7 

MaxPooling1D pool sizes 3,5,1 
Flatten layers Yes, No 
LSTM units 64 

Dense Layers 48,24 
Activation functions RELU, SELU, ELU 

  168 
2.3 Decompensation score 169 

We propose a patient’s decompensation score, which is defined as the area under the 170 
predicted sequence of decompensation risk within the forecast window, and formulated 171 
as follows: 172 

 173 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = � 𝑃𝑃(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑡𝑡𝑚𝑚

𝑡𝑡=0
 

(1) 

 174 
where 𝑃𝑃(𝑡𝑡) is the predicted decompensation risk,  𝑡𝑡 is a time point within a 𝑡𝑡𝑚𝑚-hour 175 

forecast window (e.g. 24 hours), and {𝑃𝑃(0),𝑃𝑃(1), … ,𝑃𝑃(𝑡𝑡), … ,𝑃𝑃(𝑡𝑡𝑚𝑚)}|𝑡𝑡=0
𝑡𝑡𝑚𝑚 , the sequence of 176 

decompensation risks. Since the risk 𝑃𝑃(𝑡𝑡) could take value between 0 and 1, the proposed 177 
decompensation score could range from zero (lowest) to 𝑡𝑡𝑚𝑚 (highest). A patient with a low 178 
decompensation score value suggests they are less likely to decompensate within the 179 
considered forecast window. In this study we used 𝑡𝑡𝑚𝑚 = 24, although the length of the 180 
forecast window could be altered if the available data allows. 181 

To assess the proposed decompensation score, it was compared against the National 182 
Early Warning Score (NEWS, [16]). NEWS is widely used in many healthcare settings 183 
worldwide, primarily in the UK, as the standard score for detecting deterioration in 184 
acutely ill patients. NEWS values could range from 0 to 20, and it is generally recognised 185 
that a value between 0 and 5 indicates a low risk of deterioration, while values above 10 186 
represent a high risk of deterioration.  187 
 188 
2.4 Model interpretation 189 

2.4.1 Model interpretation via SHAP values 190 
SHapley Additive exPlanations (SHAP) [17], a popular xAI technique that originated 191 

from game theory, was used to find associations between the input time series variables 192 
and the predicted outcome of decompensation risk. Specifically, we used the 193 
DeepExplainer variant, which is designed to work with DL algorithms [18].  194 

Given the computational complexity, utilising the entire dataset for SHAP analysis was 195 
unfeasible. Hence, we opted to randomly select 1,000 data samples (i.e. ICU admissions). 196 

2.4.2 Understanding patient’s predicted decompensation risk sequences 197 
To visually explore the predicted risks of decompensation, an additional dataset was 198 

created using the predicted risks from the DL models. The new dataset comprises 24 199 
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columns, representing the 24-hour forecast window. Each value in the dataset indicates 200 
the patient’s predicted probability of decompensation at a specific hour. Subsequently, 201 
principal component analysis (PCA) was performed on the derived dataset, and a score 202 
plot was generated with the first 2 principal components (PCs). The rationale behind this 203 
approach was to investigate differences between patients at high and low risk of 204 
decompensation. Therefore, a patient with high-risk values in all hours (indicating a very 205 
high risk of decompensation) should be positioned far away in the PCA scores plot from 206 
a patient who, for instance, had low predicted risk values. A k-means analysis was then 207 
applied to the projected PCA data to perform decompensation risk stratification. Each 208 
stratum (k-means cluster) was interpreted using SHAP values.   209 
 210 
3. Results 211 
3.1 Dataset used in this study 212 

The final dataset extracted and used in this study comprises 37,042 patient admissions 213 
and 22 variables of which 19 are time-varying attributes. Table 2 shows the list of these 214 
variables, including summary statistics for each of them (median and first and third 215 
quartile for numeric variables, and prevalence for binary variables), the minimum and 216 
maximum values, the level of missing values, and the imputed values. 217 

Table 2. Description of the variables used in this study. For numeric variables, the median and 1st 218 
and 3rd quartile are presented, whilst for binary variables, we present the prevalence (as a 219 
percentage). The last two columns display the level of missing values (as a percentage) and the 220 
imputed value used, respectively. GCS stands for Glasgow Coma Scale. 221 

Variable Statistics Min, Max % Missing values Imputed value 
Age [years] 67 [55, 77] 18, 89 0 - 
Height [cm] 170 [162.8, 177.9] 53.2, 231.1 55.23 170 
Weight [kg] 80.4 [67.6, 96.5] 32.5, 296.8 2.17 81 
Temperature [°C] 36.8 [36.6, 37.2] 23.1, 43.1 0.2 36.6 
Heart Rate [beats per min] 84.8 [73, 97] 15, 295 0.001 86 
Respiratory Rate [breaths per min] 19.5 [16, 23.5] 5.3, 280 0.02 19 
Fraction Inspired Oxygen [%] 40 [40, 50] 20, 100 24.44 0.21 
Oxygen Saturation [%] 97 [95, 99] 42, 100 0.004 - 
GCS Eye Response  4 [3, 4] 1, 4 0.02 4 
GCS Motor Response 6 [5, 6] 1, 6 0.02 6 
GCS Verbal Response 4 [1, 5] 1, 5 0.02 5 
GCS Total Response 14 [10, 15] 3, 15 0.02 15 
Glucose [mg/dL] 128 [107, 159] 33, 1884 0.1 128 
Haemoglobin [g/dL] 9.7 [8.5, 11.2] 4.8, 21.1 0.20 - 
Platelet count [K/uL] 190 [128, 270] 54, 1475 0.19 - 
Diastolic Blood Pressure [mmHg] 61 [53, 72] 34, 338 0.01 59 
Mean Blood Pressure [mmHg] 77 [ 68.0, 88] 14, 330 0.01 77 
Systolic Blood Pressure [mmHg] 118 [104.5, 134] 46, 365 0.01 118 
Blood pH Level 7.41 [7.36, 7.45] 6.68, 7.93 27.54 7.4 
Capillary Refill [yes] 4.26% 0, 1 6.95 0 
Prothrombin Time [sec] 13.7 [12.4, 16] 7.1, 100 4.90 11 
Magnesium [mg/dL] 2.1 [1.9, 2.3] 1.0, 14.2 0.70 1.9 

 222 
3.2 Model Performance 223 

Table 3 displays model performance results measured on the test set after calculating 224 
the optimal ROC’s threshold. It can be seen that RF and CNN-LSTM yielded the best 225 
performance among the baseline ML and DL models, respectively. It is worth noting that 226 
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the baseline ML and DL models are not directly comparable due to differences in the 227 
modelling tasks. The best set of hyperparameters for SVM and RF are shown in Table 4.  228 
 229 
Table 3. Model performance results.  230 

 231 
Table 4. Hyperparameter tuning results for SVM and RF. 232 
Algorithm Hyperparameter Best parameter 

SVM 
Kernel Radial Basis 

Gamma 0.01 
Cost 1 

RF 

Bootstrap True 
Maximum Depth 50 

Max features sqrt 
Minimum leaf samples 2 
Minimum sample split 10 

Number of trees 200 
 233 

Figure 2 shows the optimised LSTM model after hyperparameter tuning. The optimal 234 
architecture consisted of two LSTM layers of 64 units each followed by a hidden dense 235 
layer of 100 and an output dense layer of 24 units, one for each hour. ReLU and sigmoid 236 
activation functions were used in the hidden and output dense layers, respectively. A 237 
dropout layer with a drop rate of 0.5 was added after the hidden dense layer. 238 

 239 
Figure 2. Optimised LSTM model architecture.  240 
 241 

Model Balanced acc. PPV NPV AUC-PR AUC-ROC MCC 
LR 0.65 [0.64, 0.66] 0.68[0.66, 0.70] 0.95[0.94, 0.96] 0.43 [0.40, 0.46] 0.84 [0.80, 0.88] 0.17 [0.16, 0.18] 

SVM 0.61 [0.60, 0.62] 0.79[0.78, 0.80] 0.96[0.95, 0.97] 0.44 [0.43, 0.45] 0.85 [0.83, 0.87] 0.30 [0.29, 0.31] 
RF 0.84 [0.83, 0.85] 0.80[0.80,0.82] 0.96[0.96, 0.97] 0.50 [0.48, 0.53] 0.88 [0.86, 0.90] 0.34 [0.33, 0.35] 

LSTM 0.82 [0.80, 0.84] 0.71[0.70, 0.72] 0.97[0.96, 0.98] 0.49 [0.48, 0.50] 0.88 [0.86, 0.90] 0.33 [0.32, 0.34] 
CNN-LSTM 0.83 [0.82, 0.84] 0.80 [0.78, 0.82] 0.96[0.95, 0.97] 0.51 [0.50, 0.52] 0.90 [0.89, 0.91] 0.34 [0.33, 0.35] 
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The resulting optimised CNN-LSTM model architecture is shown in Figure 3. The 242 

CNN section consisted of three 1D-convolutional layers of 80, 128 and 128 filters, and 243 
kernel sizes of 5, 5, and 4, respectively. All convolutional layers were implemented with 244 
exponential linear unit (ELU) activation functions. A one-dimensional max-pooling layer 245 
with a pool size of 3 was used after the first two convolutional layers and a dropout layer 246 
with a drop rate of 0.5 before the flatten layer. The LSTM section consisted of one LSTM 247 
layer of 64 units, followed by a dropout layer of 0.6 rate, and a dense layer of 24 units 248 
representing the 24 hours of the forecast period.  249 

 250 
Figure 3. Optimised CNN-LSTM model architecture. 251 

3.3 Decompensation risk curve prediction and decompensation score 252 
Figure 4 illustrates the resulting decompensation risk curves for two patients, which 253 

were predicted by the CNN-LSTM model: patient A, who survived the forecast period 254 
and patient B who decompensated at the 3rd hour. Their corresponding decompensation 255 
scores, as calculated as the area under the decompensation curves are 0.40 and 19.1 for 256 
patients A and B, respectively.  257 
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(a) (b) 

Figure 4. Comparison of decompensation risk curves between two patients. (a) Predicted curves. (b) Actual curves. 258 

The results of the comparison between our proposed decompensation score and the 259 
standard NEWS score are displayed in Figure 5. Both scores are compared against the true 260 
decompensation score, derived from the area under the actual decompensation curve. The 261 
figure suggests that, while both scores respond similarly in patients at high risk of 262 
decompensation, our proposed score appears to be closer to the actual score values than 263 
NEWS in low-risk patients. 264 

 265 
 Figure 5. Comparison between NEWS and our proposed decompensation scores. Horizontal axis 266 

corresponds to the true decompensation score, while the vertical axis corresponds to the estimated 267 
scores. Average score values are represented by continuous lines, whilst calculated linear trends, 268 
by dashed lines. Shades around trend lines represent 95% confidence intervals. 269 

 270 
Figure 6 shows the resulting 1st vs 2nd principal component scatter plot after performing 271 

PCA on the dataset formed with the predicted decompensation risk curves for all patient 272 
admissions. Between the first two PCs, the PCA model explained 98.3% of the new data 273 
variance. Figure 6(a) shows the true decompensation score, whilst Figure 6(b) shows the 274 
predicted one. As seen in the figure, true and predicted decompensation scores are highly 275 
correlated, aligning with the reported performance of the CNN-LSTM model. We 276 
calculated the PPV and NPV of the decompensation score. Similar to NEWS, 277 
decompensation score values were divided into two classes: high risk of decompensation, 278 
with scores greater than 10 (the positive class), and low risk of decompensation, with 279 
scores less than 10 (the negative class). Overall, we obtained a PPV of 0.83 and an NPV of 280 
0.96. Additionally, the 1st PC was divided into equally-length segments, and PPVs and 281 
NPVs were calculated for each segment. Figure 6(b) also displays the corresponding PPVs 282 
and NPVs. In the same figure, note that the low PPV (0.14) for 1st PC values less than 0 283 
and the low NPV (0.00) for 1st PC values greater than 30 are due to the very small size of 284 
the positive and negative classes in those segments, respectively.    285 
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(a) 

 
(b) 

Figure 6. PCA visualisation of CNN-LSTM model’s 24-hour predictions. (a) True decompensation scores overlaid. (b) Predicted 286 
scores. Calculated PPV and NPV for each PC1 segment are shown on top of (b). 287 

Figure 7 shows the resulting PCA loadings plot, with the PCA loadings corresponding 288 
to the predicted hours for decompensation onset. The figure indicates that the first PC is 289 
mainly influenced by decompensation risk predictions between hours 4 and later, whilst 290 
risks predicted in the first three hours influence both PCs. This suggests that 291 
decompensations starting within the first 4 hours could follow a different pattern than 292 
when decompensation occurs in the final hours of the forecast period.  293 

 294 
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Figure 7. PCA loadings plot. PCA loadings (hours in the predicted risk data) are 295 
represented by the red arrows. 296 

We performed k-means on the PCA-projected data. After using the elbow method, k-297 
means segmented predicted decompensation risks into 7 clusters. The results are shown 298 
in Figure 8. It can be seen that admissions with the highest decompensation scores are 299 
primarily grouped in clusters C5 and C1, whilst clusters C0 and C7 represent admissions 300 
with the lowest scores. 301 

 302 
Figure 8. K-means clusters on the PCA projected risk prediction data. 303 

3.4 Model interpretability 304 
The resulting overall SHAP plot corresponding to the CNN-LSTM model is displayed 305 

in Figure 9. From the figure, it was estimated that Oxygen Saturation was the most 306 
relevant variable in predicting the decompensation risk, followed by Platelet Count, Heart 307 
Rate, Mean Blood Pressure, and Prothrombin Time. Variables such as Capillary Refill, 308 
Diastolic Blood Pressure and Weight were found to be the least relevant. It is also 309 
noticeable that lower Oxygen Saturation values increase the decompensation risk. 310 

SHAP values were also calculated for clusters C0 and C5, which seemed to be the most 311 
dissimilar. Figure 10 displays their resulting SHAP plots. The figure suggests that 312 
although a low oxygen saturation value is a critical factor overall, a decrease in a patient’s 313 
heart rate could be the most relevant factor in indicating a sudden patient decompensation 314 
(first hours). 315 
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Figure 10. SHAP plots. (a) Cluster C0. (b) Cluster C5. 318 
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4. Discussion 319 
4.1 Model selection and explanation 320 

This study found that the CNN-LSTM model outperformed the LSTM model in 321 
predicting a sequence of decompensation risks, although the performance differences 322 
were not significant. We also observed that traditional ML models, particularly RF, 323 
demonstrated comparable performance, although their task was to predict the risk of an 324 
event within the forecast window rather than a sequence. These results are equivalent to 325 
those reported in [2, 3, 11], although the tasks are slightly different, i.e., a different set of 326 
variables were used, or their datasets were extracted from sources other than MIMIC-IV.  327 

To the best of our knowledge, no prior published work has attempted to predict a 328 
sequence of decompensation risks rather than single events. This is a critical point, as 329 
decompensation is particularly challenging to identify, especially at its early stages. 330 
Predicting a sequence facilitates early detection of increased decompensation risk and 331 
pace, potentially leading to saving more lives.  332 

This manuscript also introduces a novel decompensation score, calculated as the area 333 
under the curve of the decompensation risk sequence. A decompensation score could 334 
provide clinicians with a single value, ranging from 0 (indicating the lowest risk) to 24 335 
(highest risk), enabling decompensation monitoring of patients during their stays in the 336 
ICU. This proposed score is innovative in that it summarises the risk of decompensation 337 
over a time period (e.g. 24 hours) rather than a single event. Our score not only provides 338 
insight into the severity of the risk but also its proximity.  339 

To understand the logic behind the CNN-LSTM model’s predictions, we performed 340 
PCA and k-means on the model predictions. In this way, predicted decompensation risks 341 
were stratified into several clusters in terms of their severity. We performed a SHAP 342 
analysis on the overall model to find associations between the input features and the 343 
decompensation risk.  344 

Furthermore, a similar analysis was carried out on two selected clusters, representing 345 
two levels of decompensation severity, to investigate changes in feature importance and 346 
the associations with the predicted decompensation risk. We found differences in the 347 
features associated with decompensation risk, depending on the specific risk cluster. 348 
These results are significant as they suggest that clinical and physiological mechanisms 349 
leading to decompensation may be time-varying. Nevertheless, we acknowledge that 350 
further investigation is needed. The results, however, indicate that the proposed 351 
methodological approach is useful not only in predicting risk but also in providing 352 
valuable insights into the reasons behind the model’s predictions. 353 
 354 
4.2 Key risk factors in decompensation prediction 355 

The CNN-LSTM model highlights that variables such as oxygen saturation, 356 
prothrombin time (PT), platelet count, heart rate, and blood pressure are key risk factors 357 
of decompensation, as shown in Figure 8.  358 

Reduced oxygen saturation has also been previously identified as one of the factors 359 
associated with clinical deterioration [19–21]. In the case of PT, high levels of it can be 360 
associated with patient deterioration [22–24], but the significance and appropriate 361 
response depend on the individual patient’s medical history and the underlying causes of 362 
the elevated PT. 363 

Platelet count is not typically considered a decompensation marker on its own, 364 
although abnormalities in platelet count can indicate various medical conditions, e.g., a 365 
low platelet count is common in patients with cirrhosis, and it may indicate a more serious 366 
and advanced nature of the condition and an increased risk of complications [25, 26]. 367 
Abnormal platelet counts can also be related to cancer, and cancer patients who are 368 
critically ill may be more susceptible to decompensation compared to individuals without 369 
cancer [27, 28]. Elevated platelet counts (thrombocytosis, greater than 450 × 109/L) can be 370 
a marker for potential cancer, including lung, endometrial, gastric, oesophageal, or 371 
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colorectal cancer. The association of low platelet count (thrombocytopenia, below 150 × 372 
109/L) with cancer includes systemic chemotherapy, radiation, metastatic cancer, and 373 
haematological malignancies [29, 30]. 374 

Both low and high heart rates can be associated with patient decompensation, but the 375 
significance of heart rate abnormalities depends on the clinical context and underlying 376 
causes. Low heart rate (bradycardia) can be a sign of decompensation in certain situations 377 
[31], especially if it leads to reduced cardiac output and insufficient blood supply to vital 378 
organs. It can be associated with conditions like heart block, severe conduction system 379 
abnormalities, or drug toxicity, which may contribute to decompensation. High heart rate 380 
(tachycardia) can also be associated with decompensation, particularly if it results from 381 
underlying heart disease or other medical conditions [32–35], e.g. atrial fibrillation [36–382 
39], ventricular tachycardia [40, 41], or severe systemic infection [23, 42], which may 383 
contribute to decompensation. 384 

Blood pressure can be an important factor in assessing the risk of patient 385 
decompensation, particularly in the context of cardiovascular health [43, 44]. Prolonged 386 
hypertension can contribute to chronic vascular damage and increase the risk of 387 
conditions like stroke [45], heart attack [43, 44], kidney disease [46, 47], and vascular 388 
diseases [48, 49]. While hypertension itself is not a direct marker of decompensation, it is 389 
a risk factor for the development of various cardiovascular and cerebrovascular 390 
complications, which can lead to decompensation. Hypotension, in turn, can be associated 391 
with conditions such as shock [50], heart failure [51], or sepsis [52], and it is considered a 392 
risk factor for decompensation in these cases. In ICU patients, hypotension can be 393 
indicative of various underlying issues and can lead to complications [52, 53], including 394 
multi-organ failure, cerebral hypoperfusion, and poor outcomes. 395 
 396 
4.3 Limitations of the study 397 

Our study has several limitations, primarily related to the dataset and the data 398 
recorded in the database. Notably, MIMIC-IV lacks a precise definition for ICU patient 399 
decompensation. Similar to other studies, we used the risk of death as a proxy. However, 400 
it is possible that certain events leading to patient death may not be directly correlated 401 
with health decompensation. While a patient can recover from decompensation, they 402 
cannot recover from death.  403 

Another limitation arises from the exclusion of patients with ICU stays of less than 24 404 
hours, which may introduce potential sampling bias. Selecting the right length for the time 405 
series is a trade-off between patient inclusion and the number of time points per time 406 
series, both of which can potentially affect model performance. It is also important to note 407 
that SHAP analysis can only suggest potential associations between input characteristics 408 
and predictions, which is not the same as stating causation. This means that further 409 
research is needed to identify potential confounding factors if such causal links are to be 410 
established. 411 

Furthermore, clinical data often exhibit high levels of missing values and noise, which 412 
commonly limit the performance of any data-driven model, regardless of the ML 413 
techniques used. The choice of vitals and other factors is also very important in the 414 
development of any score, in our case, a decompensation score. Since the aim of our paper 415 
was to propose a methodology that would enable the development of such a score, we 416 
used publicly available data from the MIMIC-IV database. However, we recognise that 417 
further work will be required, including not only a revision of the choice of variables but 418 
also further testing in prospective patient cohorts. Importantly, special consideration must 419 
be given to the selection of the missing value imputation method, as it can impact both 420 
model performance and the quality of the proposed score. In this study, we opted for the 421 
same imputation method as the one used in [11] since both studies use similar data sources 422 
and settings. However, imputation methods that could be more appropriate for time 423 
series should also be explored in further analyses. 424 
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5. Conclusions 425 

Our study confirms the effectiveness of ML models in predicting ICU 426 
decompensation. A key contribution of our research lies in the prediction of a sequence of 427 
decompensation risks rather than a single event. Additionally, our study introduces a 428 
novel decompensation score, derived from the predicted sequences, which could 429 
potentially offer clinicians a more robust tool for monitoring and early detection of patient 430 
decompensation, thereby potentially saving more lives. 431 
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