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Abstract—Glioblastomas are one the most aggressive brain 
tumors. Their usual bad prognosis is due to the heterogeneity of 
their response to treatment and the lack of early and robust 
biomarkers to decide whether the tumor is responding to 
therapy. In this work, we propose the use of a semi-supervised 
methodology for source extraction to identify the sources 
representing tumor response to therapy, untreated/unresponsive 
tumor, and normal brain; and create nosological images of the 
response to therapy based on those sources. Fourteen mice were 
used to calculate the sources, and an independent test set of eight 
mice was used to further evaluate the proposed approach. The 
preliminary results obtained indicate that was possible to 
discriminate response and untreated/unresponsive areas of the 
tumor, and that the color-coded images allowed convenient 
tracking of response, especially throughout the course of therapy. 
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I. INTRODUCTION 
Glioblastoma (GBM) are high-grade malignant brain 

tumors that evolve fast, killing patients in less than 12-15 
months. None of the classical or experimental available 
therapies cures GBM in humans or in preclinical models. 
Nowadays, the standard clinical therapy procedure includes 
maximal safe tumor resection, radiotherapy and chemotherapy 
with temozolomide (TMZ) –an alkylating drug that interferes 
with DNA replication [1] and leads to apoptotic cell death. 
TMZ administered alone induces cell proliferation arrest in 
genetically engineered mice [2]. Some causes for the usual bad 
prognosis of GBM are the heterogeneity of their response to 
treatment and the lack of early and robust biomarkers to decide 
whether the tumor is responding to therapy. 

Given that magnetic resonance (MR) signals (i.e. 
spectroscopy, MRS / spectroscopic imaging, MRSI) may 
represent a mixture of tissues, signal source extraction is a 
relevant approach for identifying them from the spectroscopic 
signal. In [3], the authors proposed a methodology to guide the 
source extraction in the direction of the class prototypes of 
brain tumors. Here, we propose to use this methodology in a 



different context, which is guiding the source extraction in the 
direction of the glioblastoma response to therapy. We also 
propose to generate color-coded maps [4] displaying the spatial 
representation of these sources, which are nosological images 
of the response to therapy. 

II. MATERIALS 
A total of fourteen C57BL/6 female mice of 20-23g in 

weight, inoculated with GL261 mouse glioma cells as in [5], 
were used in the first stage of this study, which is the source 
extraction in a semi-supervised way. MR studies were carried 
out at 7T, with isoflurane anaesthesia (1.5-2%) at 37°C. 
Magnetic resonance images (MRI, T2w, TR/TEeff 4200/36ms) 
were acquired for tumor volume measurement. Parameters for 
MRSI were as in [5]. Eight of the fourteen mice (C415, C418, 
C437, C525, C527, C575, C584, and C586) were treated 
following a previously developed therapy protocol for 
preclinical glioblastoma using GL261 tumors, consisting of 
three temozolomide (TMZ) cycles (given on the following 
days post-implantation: 11-15, 19-20 and 24-25), which 
induces response as tumor growth arrest, as detected by MRI 
[6]. The other six mice (C255, C288, C351, C520, C529, and 
C583) did not receive any treatment and were used as the 
control group. We validated the obtained results against 
histopathology. 

A further set of mice was used in the second stage of this 
study, which involves the use of the semi-supervised sources to 
produce nosological images in cases not involved in the 
training stage from which the sources were obtained. This new 
test set is composed by seven well-known untreated mice from 
a previous study [4]; and one additional treated mouse (C819). 
The latter was handled (tumor induction and treatment) and 
scanned exactly as the treated mice from the training set, and 
with similar characteristics, but instead of acquiring one MRSI 
as in the training set, five MRSI were acquired at different time 
points (i.e. days 16, 18, 22, 36,45 post GL261 cells inoculation 
(pi) in C57BL/6 mice). 

III. METHODS 
In this study, we apply the semi-supervised methodology 

proposed in [3] for the extraction of meaningful source signals. 
These sources are used later on for the generation of 
nosological images of the response to therapy. 

A. Non-negative Matrix Factorization 
Non-negative Matrix Factorization (NMF) [7], [8] methods 

is a group of multivariate data analysis techniques aimed to 
estimate meaningful latent components, also known as sources, 
from non-negative data. Standard NMF methods decompose 
the data matrix X into two non-negative matrices S (the 
sources) and A (the mixing matrix). The differences between 
them is given by the different cost functions used for 
measuring the divergence between X and S*A. In [9] the 
authors present a variant of NMF, namely Convex-NMF, in 
which the basis vectors of S are constrained to be convex 
combinations of the data points. Convex-NMF relaxes the 
NMF constraints to allow negative values both in the data 
matrix and the sources. 

B. Semi-supervised extraction of sources signals 
The semi-supervised methodology in [3] proposes to take 

benefit from the use of prior knowledge derived from class 
membership of the spectra to guide the source extraction. It 
involves three main stages: 

i. The definition of a Fisher Information (FI) metric [10] 
to model pairwise similarities and dissimilarities 
between data points, using a Multi-Layer Perceptron 
(MLP) classifier to estimate the conditional 
probabilities of class membership. 

ii. The approximation of the empirical data distribution in 
a Euclidean projective space in which NMF-based 
techniques can be applied. This is done in this study 
with Multidimensional Scaling methods, specifically 
with the iterative majorization algorithm [11], [12]. 

iii. The application of Convex-NMF for the source 
decomposition of the data. 

C. Nosological imaging of the response to therapy 
For the generation of color-coded nosological images of 

each individual mouse we used the values of the mixing 
matrix, as they represent the proportions in which each source 
is being represented in each voxel. We produced nosological 
images throughout the course of therapy to track response 
changes. 

D. Experimental settings 
For the extraction of the sources with the semi-supervised 

methodology, we used a total of 508 spectral vectors from 14 
mice, 8 of them treated and showing transient response to 
TMZ, and 6 of them from the control group. Animals treated 
with TMZ (two or three cycles) were expected to show a 
response pattern, based on tumor volume growth arrest, and 
increased survival in comparison to the control group [6]. The 
selected spectra corresponded to the subsets of voxels labeled 
as tumor (responding and untreated) and normal parenchyma, 
assuming that all the voxels inside each tumor belonged to the 
same category (responding or control). The robustness of this 
assumption was later on evaluated using the test set described 
before. Most of the voxels in the edges of the grid were 
discarded (except in case C586) due to low signal to noise ratio 
(SNR); and those located in the tumor boundaries with normal 
tissue were also discarded to avoid spectral pattern mixing or 
contamination from different tissue types essentially as 
described in [4], [13]. 

The 80% of those 508 spectra (randomly selected) were 
used to create the MLP model, which was assessed with the 
remaining 20% of them. This model was used to estimate the 
conditional probabilities of class membership for each case, 
which were then used to define the FI metric. Three sources 
were calculated then following the three steps of the semi-
supervised methodology mentioned before, one of them to 
represent the responding tumor, another to represent the tumor 
without treatment, and a third for the normal tissue. 

As the sources were calculated from a subset of voxel of 
different mice, the resulting mixing matrix is not useful for 
nosological imaging purposes. For the latter, we fixed the set 



of extracted sources and calculated their corresponding mixing 
matrices. Equation (9) in [3] provided us with a mechanism to 
determine the extent to which a fixed set of sources are 
encoded in a new data set, facilitating the calculation of the 
new mixing matrices, and with them, the nosological images. 
We also produced an overall image compiling the results of the 
individual nosological maps of the sources, in which each 
voxel is colored with the color that represents the source with 
the maximum value of mixing matrix for that particular voxel. 
Figure 1 summarizes the general representation of the semi-
supervised methodology and how we used it in this study to 
track response to therapy. 

 
Fig. 1. General representation of the semi-supervised methodology used in 

this study to track response to therapy. 

IV. PRELIMINARY RESULTS 

A. Source signals calculated 
Figure 2 illustrates the source signals calculated in a semi-

supervised way, which represent the normal brain tissue and 
the treated (mainly in response to therapy) and untreated 
(actively proliferating) tumor regions. 

 

 
Fig. 2.  The three sources calculated with the semi-supervised methodology 

(see top row): green represents treated responding tumor (R);  red, 
untreated/unresponsive tumor (T); and blue, normal tissue (N). The main 
differences between sources R and T are also detailed (bottom). 
Horizontal axes indicate the frequencies measured in ppm. 

 
 

B. Nosological imaging of the response to therapy 
As explained before in the experimental settings section of 

Methods, the new mixing matrix calculated for each mouse 
fixing the sources are used in this study to generate color-
coded nosological images. This section shows preliminary 
results on the use of these images to monitor response to 
therapy in a particular time point, and throughout the course of 
therapy. 

For illustration purposes, in Figure 3 we show the results of 
three mice from the training set, two of them treated and one 
control. It shows the region of interest of each mouse with the 
original labeling (the tags given by the expert spectroscopist); 
the three nosological color-coded maps associated to the 
sources T, R and N; and the resulting nosologic image 
grouping the information of these maps, in which green 
represents response to therapy, red represents tumor (untreated 
or without response), and blue represents normal brain.  

To test the validity of the methodology to produce 
nosological maps in new cases, we first use the seven control 
mice of the test set from [4] to check that they are correctly 
being represented by the tumor source. Figure 4 compiles the 
results.  

 

 
 



 
Fig. 3. Nosologic imaging for three mice from the training set. First column 

shows the map of original tags where red means (treated/untreated) 
tumor and blue means normal brain. The three color-coded maps from 
the middle are the nosological images associated to each source, where 
the scale of colors moves from red to blue, red indicates high values in 

the mixing matrix while blue indicates low values. Last column 
compiles the results from the previous three maps into one, in which the 
red color is for untreated tumor, green for responding tumor, and blue 

for normal brain.All the maps are superimposed over the corresponding 
T2w MR image. Please note the intermediate mixing matrix values for 

the tumour region in C418 (22 days pi). 

 

 
Fig. 4. Nosological maps (rows 2-4) associated to the tumor (T), responding 

(R) and normal (N) sources for the seven untreated mice of the 
independent test set. The top row shows the delineation of the tumor 

area as suggested by the MRI-abnormal region (black solid line) and the 
Proliferation Index (PI)>30% regions (yellow solid line), superimposed 

to the T2w images. 
 

Secondly, we test the proposed approach in new, treated 
data, to show the usefulness of its use to track response to 
therapy. Very preliminary results with one mouse (C819) 
monitoring its response throughout the course of a therapy are 
shown in Figure 5. This figure shows the nosologic color-
coded maps at selected time points (days 16, 18, 22, 36 and 45) 
during and after the three cycles of treatment. These days are 
highlighted (black triangles) in Figure 6, where we show how 
the tumor volume changes in both the control group of GL261 
tumor bearing mice and a treated (C819) mouse. 

 
Fig. 5. Nosologic color-coded maps (top row) corresponding to mouse C819 

at chosen time points. Blue voxels are assigned to normal brain 
parenchyma, red voxels to untreated/unresponsive tumor and green 

voxels to treated responding tumor. Tumor boundaries (T2w 
hiperintensity-derived, see bottom row) are marked with a white dotted 

line. 
 

 

 

Fig. 6. Tumor volume change in treated and control mice. The circles 
represent the mean volume of a reference set [6]; the diamonds represent 
the tumor volume of the mice used for training (the day they were 
sacrificed); and the triangles represent the tumor volume of one treated 
(C819) mouse. Rectangles in light green highlight the 3 TMZ cycles. 
Black triangles highlight the selected days where nosologic maps were 
produced (see Figure 5). 

V. DISCUSSION 

A. Source signals calculated 
Even when the treated and untreated sources have a very 

high correlation (0.97), preliminary results suggest that the 
subtle differences between them are able to discriminate these 
two regions in new/unseen mice data, based on their 
metabolome pattern changes recorded by MRSI. 

The nature of the changes in the spectral pattern of treated 
tumors is mainly related to mobile lipid (ML) and 
polyunsaturated fatty acids (PUFA) resonances, which are very 
sensitive and accurate biomarkers for detecting therapy-related 
metabolic changes, as their intensities increase upon apoptosis 

 



induced by treatment [14], [15]. Still, other contributions (e.g. 
lactate (1.3 and 4.1 ppm), glutamine, glutamate, alanine (≈3.8 
ppm), and myo-inositol/glycine (≈3.5 ppm) (see figure 2) may 
be helping discrimination among tumor sources. 

B. Nosological imaging of the response to therapy 
Results shown in Figure 3 summarize the different types of 

response detected in the training set after applying the semi-
supervised source extraction methodology. The control case 
(C583) shows high values for the mixing matrix of the 
untreated/unresponsive tumor source inside the abnormal mass 
assessed by T2w imaging, as expected. On the other hand, 
tumor C586 is completely associated to the responding tumor 
source, in correlation with the volume measurement acquired at 
that time-point (the value is included in the average growth 
curve for treated mice represented in Figure 6). Finally, case 
C418 is partially associated with the unresponsive and 
responding sources, indicating a potential heterogeneity in 
tumor response to treatment. This partial response may be 
explained by the fact that the tumor volume registered on this 
day was slightly higher than the average growth curve for 
treated mice (see Figure 6), suggesting that it was not 
completely responding (yet) to TMZ therapy. These results 
suggest that the semi-supervised source extraction 
methodology is able to discriminate not only between 
responding and progressing tumors, but also between 
heterogeneous response regions in a particular case. 

With respect to the control group, in the previous study [4] 
in which only two sources were extracted with Convex-NMF 
[9], the solid tumor region was validated by two indicators: 
proliferation index (PI) > 30% and abnormal area as suggested 
by the MRI (T2w hyperintensity-derived). The results shown in 
Figure 4 indicate that, firstly, the tumor source (T) is the one 
that always represents the tumor masses in the seven mice (not 
the responding source). And secondly, the delineation of the 
tumor areas agrees with those suggested by the two indicators 
from [4]. Incidentally, in case C179, the nosologic image 
provides a better delineation of the abnormally proliferating 
area (Figure 4), including these areas in which proliferation is 
below 30%.  

Nosologic images obtained for the treated mouse of the 
independent test set, namely C819, at representative time 
points during and after the course of therapy are presented in 
Figure 5. They allowed convenient tracking of response to 
treatment and differentiated the intratumoral heterogeneity of 
response, hinting the growth arrest and relapse (day 18 and 36, 
respectively), before changes in tumor volume were observed 
(Figure 6). Until the day 16 the tumor was recognized as fully 
unresponsive and the evidence of response started to be 
observed at day 18. This preceded the growth arrest (Figure 6) 
and the nosological image demonstrated full response on the 
day 22, followed by diminution of the mass. On the other hand, 
the image produced on the day 36 indicates signals of relapse, 
just before tumor started to regrow and finally on the day 45 
was recognized as mostly fully growing again. 

VI.  CONCLUSIONS 
In this communication we have applied the semi-supervised 

methodology proposed in [3] to assist the source extraction and 
obtain sources that better represent the therapy response in 
preclinical glioblastoma. The resulting sources were able to 
discriminate between response and untreated/unresponsive 
areas of the tumor, not only in the mice used for training but 
also in an independent test set of seven control and one treated 
(in different time points). We also provided a mechanism to 
produce nosologic images of the response to the therapy, based 
on the sources calculated in a semi-supervised way, which can 
serve as a valuable non-invasive tool in preclinical analysis for 
therapy response evaluation and monitoring. 
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