15 research outputs found

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Harvesting Season and Botanical Origin Interferes in Production and Nutritional Composition of Bee Pollen

    No full text
    ABSTRACT We aimed to evaluate the frequency of bee pollen production, its botanical origin and chemical composition when collected in different seasons. Our results indicate that higher proteins (22.80 ± 3.09%) and flavonoids (2789.87 ± 1396.00 μg 100g-1) levels were obtained in the winter season, which also showed greater pollen production (134.50 ± 35.70 grams) and predominance of the Myrtaceae family. As for spring we found high concentrations of lipids (4.62 ± 2.26%) and low ash content (2.22 ± 0.39%). Regarding the amino acid composition and vitamin C content, we found no differences between the averages throughout the seasons. Our results highlight the importance of understanding not only the botanical origin and the chemical composition of bee pollen, but also the harvesting frequency of this product by bees, so that it becomes possible to supplement the colonies in times of natural food resources shortage

    Toxicity and motor changes in Africanized honey bees (Apis mellifera L.) exposed to fipronil and imidacloprid

    No full text
    ABSTRACT This study evaluated the in vitro toxicity and motor activity changes in African-derived adult honey bees (Apis mellifera L.) exposed to lethal or sublethal doses of the insecticides fipronil and imidacloprid. Mortality of bees was assessed to determine the ingestion and contact lethal dose for 24 h using probit analysis. Motor activities in bees exposed to lethal (LD50) and sublethal doses (1/500th of the lethal dose) of both insecticides were evaluated in a behavioral observation box at 1 and 4 h. Ingestion and contact lethal doses of fipronil were 0.2316 ? 0.0626 and 0.0080 ? 0.0021 μg/bee, respectively. Ingestion and contact lethal doses of imidacloprid were 0.1079 ? 0.0375 and 0.0308 ? 0.0218 μg/bee, respectively. Motor function of bees exposed to lethal doses of fipronil and imidacloprid was impaired; exposure to sublethal doses of fipronil but not imidacloprid impaired motor function. The insecticides evaluated in this study were highly toxic to African-derived A. mellifera and caused impaired motor function in these pollinators

    Influence of the Collection Season on Production, Size, and Chemical Composition of Bee Pollen Produced by Apis Mellifera L.

    No full text
    The aim of our study was to investigate how the collection period affects and influences the production, chemical composition, and size of bee pollen loads (0.5, 1.0, 2.0, greater than 2.0 mm). The results showed there was a predominance of pollen loads with a diameter greater than 2.0 mm in all the production seasons. For all the seasons, there were no differences in protein content between the particle sizes. But when comparing 0.5 mm during the different periods, there were significant differences; the highest value was found during the winter (24.39 ± 3.7%). As far as lipids and crude fiber are concerned, we obtained differences between the same granulometry sizes for the spring and summer seasons. As for ashes, the results showed differences between different particle sizes for the summer and autumn seasons. Our results have shown that regardless of pollen particle size, its quality was not altered, suggesting that smaller loads can be commercially used by containing nutritional quality or else be used by beekeepers as a supplement during periods of food scarcity

    Effects of β-(1→3,1→6)-d-glucan and density of diets on the blood profiles of immunologically challenged weaned piglets

    No full text
    An experiment was conducted to evaluate the effects of two levels of the β-(1→3,1→6)-d-glucan (0 and 500ppm) from yeast Saccharomyces cerevisiae and two levels of energy (3300 and 3450kcalMEkg(-1)) on the hematological, immunological and, biochemical profiles of thirty-six 21-days-old weaned piglets, challenged with 150μgkg(-1) of BW lipopolysaccharide (LPS) from Escherichia coli serotype 055:B5. The experimental design was a randomized complete block design in a 2×2 factorial arrangement with nine replicates per treatment and, one animal per experimental unit. The data were analyzed in accordance with the multivariate analysis procedure of SAS and, the treatment means of parametric and non-parametric data were compared by Bonferroni's test (P<0.05) and, by Dunn's test (P<0.05), respectively. The data of the blood profiles of alanine aminotransferase, alkaline phosphatase and, creatinine showed that LPS did not cause kidney or liver damage in the animals. The addition of beta-glucan in the diets did not prove the robustness of its effect and biological relevance when provided with low nutrient-density. However, its addition combined with the high-nutrient-density diets showed less marked hypoglobulinemia in piglets, which may have contributed to the decreasing of the synthesis of inflammatory mediators

    Action of Brazilian propolis on hematological and serum biochemical parameters of Blue-fronted Amazons (Amazona aestiva, Linnaeus, 1758) in captivity

    No full text
    The present study aimed to evaluate the effect of propolis use on hematological and serum biochemical parameters in Blue- fronted Amazons (Amazona aestiva). For this, 12 adult birds were distributed randomly into individual cages, divided into treatments with different propolis levels (A = 0.0%; B = 0.5%; and C = 1.0%), in 3 distinct phases (I, II, and III), with 15-d duration for phases I and III and 30 d for phase II, totaling 60 d. In phases I and III, all birds received treatment A ration, and in phase II received A, B, or C (4 birds per treatment). At the end of each phase, blood was collected for biochemical and hematological evaluations. The variables were analyzed by ANOVA (P < 0.05). Results suggest that 0.5% propolis reduced lactate dehydrogenase levels, whereas treatment B augmented hemoglobin concentrations and eosinophil count. It is concluded that 0.5% propolis improves levels of lactate dehydrogenase, hemoglobin, and eosinophils.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES
    corecore