131 research outputs found

    Plasduino: an inexpensive, general purpose data acquisition framework for educational experiments

    Full text link
    Based on the Arduino development platform, Plasduino is an open-source data acquisition framework specifically designed for educational physics experiments. The source code, schematics and documentation are in the public domain under a GPL license and the system, streamlined for low cost and ease of use, can be replicated on the scale of a typical didactic lab with minimal effort. We describe the basic architecture of the system and illustrate its potential with some real-life examples.Comment: 11 pages, 10 figures, presented at the XCIX conference of the Societ\`a Italiana di Fisic

    A FENCING KINEMATIC ANALYSIS BASED ON COACH’S CRITERIA

    Get PDF
    The purpose of this study was to identify, based on coach's criteria, upper body and center of mass kinematic variables that lead to a good performance in epee fencing. We used an Optitrack motion capture system to evaluate one skilled amateur fencing athlete performing a lunge in the presence or not of a static opponent. In the presence of a static opponent (target), the individual developed a lower centre of mass forward velocity, a higher epee’s tip forward velocity and improved synchronization between the upper and the lower limbs. The best-performed trials according to coach criteria showed differences in the elbow movement in both the armed and unarmed arm compared to the other trials. Our results highlights the importance of the unarmed arm to lunge performance and corroborate the idea that training with and without the use of a target improve different motor abilities

    Space/Time Noncommutativity in String Theories without Background Electric Field

    Get PDF
    The appearance of space/time non-commutativity in theories of open strings with a constant non-diagonal background metric is considered. We show that, even if the space-time coordinates commute, when there is a metric with a time-space component, no electric field and the boundary condition along the spatial direction is Dirichlet, a Moyal phase still arises in products of vertex operators. The theory is in fact dual to the non-commutatitive open string (NCOS) theory. The correct definition of the vertex operators for this theory is provided. We study the system also in the presence of a BB field. We consider the case in which the Dirichlet spatial direction is compactified and analyze the effect of these background on the closed string spectrum. We then heat up the system. We find that the Hagedorn temperature depends in a non-extensive way on the parameters of the background and it is the same for the closed and the open string sectors.Comment: 18 pages, JHEP styl

    The superstring Hagedorn temperature in a pp-wave background

    Full text link
    The thermodynamics of type IIB superstring theory in the maximally supersymmetric plane wave background is studied. We compute the thermodynamic partition function for non-interacting strings exactly and the result differs slightly from previous computations. We clarify some of the issues related to the Hagedorn temperature in the limits of small and large constant RR 5-form. We study the thermodynamic behavior of strings in the case of AdS3×S3×T4AdS_3 \times S^3 \times T^4 geometries in the presence of NS-NS and RR 3-form backgrounds. We also comment on the relationship of string thermodynamics and the thermodynamic behavior of the sector of Yang-Mills theory which is the holographic dual of the string theory.Comment: 22 pages, JHEP style, minor misprints corrected, some comments adde

    Measurement of the atmospheric muon depth intensity relation with the NEMO Phase-2 tower

    Get PDF
    The results of the analysis of the data collected with the NEMO Phase-2 tower, deployed at 3500 m depth about 80 km off-shore Capo Passero (Italy), are presented. Cherenkov photons detected with the photomultipliers tubes were used to reconstruct the tracks of atmospheric muons. Their zenith-angle distribution was measured and the results compared with Monte Carlo simulations. An evaluation of the systematic effects due to uncertainties on environmental and detector parameters is also included. The associated depth intensity relation was evaluated and compared with previous measurements and theoretical predictions. With the present analysis, the muon depth intensity relation has been measured up to 13 km of water equivalent.Comment: submitted to Astroparticle Physic

    The Advanced Virgo+ status

    Get PDF
    The gravitational wave detector Advanced Virgo+ is currently in the commissioning phase in view of the fourth Observing Run (O4). The major upgrades with respect to the Advanced Virgo configuration are the implementation of an additional recycling cavity, the Signal Recycling cavity (SRC), at the output of the interferometer to broaden the sensitivity band and the Frequency Dependent Squeezing (FDS) to reduce quantum noise at all frequencies. The main difference of the Advanced Virgo + detector with respect to the LIGO detectors is the presence of marginally stable recycling cavities, with respect to the stable recycling cavities present in the LIGO detectors, which increases the difficulties in controlling the interferometer in presence of defects (both thermal and cold defects). This work will focus on the interferometer commissioning, highlighting the control challenges to maintain the detector in the working point which maximizes the sensitivity and the duty cycle for scientific data taking

    Advanced Virgo Plus: Future Perspectives

    Get PDF
    While completing the commissioning phase to prepare the Virgo interferometer for the next joint Observation Run (O4), the Virgo collaboration is also finalizing the design of the next upgrades to the detector to be employed in the following Observation Run (O5). The major upgrade will concern decreasing the thermal noise limit, which will imply using very large test masses and increased laser beam size. But this will not be the only upgrade to be implemented in the break between the O4 and O5 observation runs to increase the Virgo detector strain sensitivity. The paper will cover the challenges linked to this upgrade and implications on the detector's reach and observational potential, reflecting the talk given at 12th Cosmic Ray International Seminar - CRIS 2022 held in September 2022 in Napoli

    Open data from the third observing run of LIGO, Virgo, KAGRA and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in April of 2019 and lasting six months, O3b starting in November of 2019 and lasting five months, and O3GK starting in April of 2020 and lasting 2 weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main dataset, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages.Comment: 27 pages, 3 figure

    Search for Eccentric Black Hole Coalescences during the Third Observing Run of LIGO and Virgo

    Full text link
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70M>70 MM_\odot) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e0.30 < e \leq 0.3 at 0.330.33 Gpc3^{-3} yr1^{-1} at 90\% confidence level.Comment: 24 pages, 5 figure

    Model-based cross-correlation search for gravitational waves from the low-mass X-ray binary Scorpius X-1 in LIGO O3 data

    Get PDF
    corecore