58 research outputs found

    Analyticity and integrability in the chiral Potts model

    Get PDF
    We study the perturbation theory for the general non-integrable chiral Potts model depending on two chiral angles and a strength parameter and show how the analyticity of the ground state energy and correlation functions dramatically increases when the angles and the strength parameter satisfy the integrability condition. We further specialize to the superintegrable case and verify that a sum rule is obeyed

    Critical behaviour of the two-dimensional Ising susceptibility

    Full text link
    We report computations of the short-distance and the long-distance (scaling) contributions to the square-lattice Ising susceptibility in zero field close to T_c. Both computations rely on the use of nonlinear partial difference equations for the correlation functions. By summing the correlation functions, we give an algorithm of complexity O(N^6) for the determination of the first N series coefficients. Consequently, we have generated and analysed series of length several hundred terms, generated in about 100 hours on an obsolete workstation. In terms of a temperature variable, \tau, linear in T/T_c-1, the short-distance terms are shown to have the form \tau^p(ln|\tau|)^q with p>=q^2. To O(\tau^14) the long-distance part divided by the leading \tau^{-7/4} singularity contains only integer powers of \tau. The presence of irrelevant variables in the scaling function is clearly evident, with contributions of distinct character at leading orders |\tau|^{9/4} and |\tau|^{17/4} being identified.Comment: 11 pages, REVTex

    The saga of the Ising susceptibility

    Full text link
    We review developments made since 1959 in the search for a closed form for the susceptibility of the Ising model. The expressions for the form factors in terms of the nome qq and the modulus kk are compared and contrasted. The λ\lambda generalized correlations C(M,N;λ)C(M,N;\lambda) are defined and explicitly computed in terms of theta functions for M=N=0,1M=N=0,1.Comment: 19 pages, 1 figur

    Correction induced by irrelevant operators in the correlators of the 2d Ising model in a magnetic field

    Get PDF
    We investigate the presence of irrelevant operators in the 2d Ising model perturbed by a magnetic field, by studying the corrections induced by these operators in the spin-spin correlator of the model. To this end we perform a set of high precision simulations for the correlator both along the axes and along the diagonal of the lattice. By comparing the numerical results with the predictions of a perturbative expansion around the critical point we find unambiguous evidences of the presence of such irrelevant operators. It turns out that among the irrelevant operators the one which gives the largest correction is the spin 4 operator T^2 + \bar T^2 which accounts for the breaking of the rotational invariance due to the lattice. This result agrees with what was already known for the correlator evaluated exactly at the critical point and also with recent results obtained in the case of the thermal perturbation of the model.Comment: 28 pages, no figure

    On the magnetic perturbation of the Ising model on the sphere

    Full text link
    In this letter we will extend the analysis given by Al. Zamolodchikov for the scaling Yang-Lee model on the sphere to the Ising model in a magnetic field. A numerical study of the partition function and of the vacuum expectation values (VEV) is done by using the truncated conformal space (TCS) approach. Our results strongly suggest that the partition function is an entire function of the coupling constant.Comment: 8 pages, 1 figure, revised version, references adde

    Universal ratios of critical amplitudes in the Potts model universality class

    Full text link
    Monte Carlo (MC) simulations and series expansions (SE) data for the energy, specific heat, magnetization, and susceptibility of the three-state and four-state Potts model and Baxter-Wu model on the square lattice are analyzed in the vicinity of the critical point in order to estimate universal combinations of critical amplitudes. We also form effective ratios of the observables close to the critical point and analyze how they approach the universal critical-amplitude ratios. In particular, using the duality relation, we show analytically that for the Potts model with a number of states q4q\le 4, the effective ratio of the energy critical amplitudes always approaches unity linearly with respect to the reduced temperature. This fact leads to the prediction of relations among the amplitudes of correction-to-scaling terms of the specific heat in the low- and high-temperature phases. It is a common belief that the four-state Potts and the Baxter-Wu model belong to the same universality class. At the same time, the critical behavior of the four-state Potts model is modified by logarithmic corrections while that of the Baxter-Wu model is not. Numerical analysis shows that critical amplitude ratios are very close for both models and, therefore, gives support to the hypothesis that the critical behavior of both systems is described by the same renormalization group fixed point.Comment: Talk presented at CCP 2008, Ouro Preto, 5-9 August 200

    Square lattice Ising model susceptibility: Series expansion method and differential equation for χ(3)\chi^{(3)}

    Full text link
    In a previous paper (J. Phys. A {\bf 37} (2004) 9651-9668) we have given the Fuchsian linear differential equation satisfied by χ(3)\chi^{(3)}, the ``three-particle'' contribution to the susceptibility of the isotropic square lattice Ising model. This paper gives the details of the calculations (with some useful tricks and tools) allowing one to obtain long series in polynomial time. The method is based on series expansion in the variables that appear in the (n1)(n-1)-dimensional integrals representing the nn-particle contribution to the isotropic square lattice Ising model susceptibility χ\chi . The integration rules are straightforward due to remarkable formulas we derived for these variables. We obtain without any numerical approximation χ(3)\chi^{(3)} as a fully integrated series in the variable w=s/2/(1+s2)w=s/2/(1+s^{2}), where s=sh(2K) s =sh (2K), with K=J/kTK=J/kT the conventional Ising model coupling constant. We also give some perspectives and comments on these results.Comment: 28 pages, no figur

    Holonomy of the Ising model form factors

    Full text link
    We study the Ising model two-point diagonal correlation function C(N,N) C(N,N) by presenting an exponential and form factor expansion in an integral representation which differs from the known expansion of Wu, McCoy, Tracy and Barouch. We extend this expansion, weighting, by powers of a variable λ\lambda, the jj-particle contributions, fN,N(j) f^{(j)}_{N,N}. The corresponding λ \lambda extension of the two-point diagonal correlation function, C(N,N;λ) C(N,N; \lambda), is shown, for arbitrary λ\lambda, to be a solution of the sigma form of the Painlev{\'e} VI equation introduced by Jimbo and Miwa. Linear differential equations for the form factors fN,N(j) f^{(j)}_{N,N} are obtained and shown to have both a ``Russian doll'' nesting, and a decomposition of the differential operators as a direct sum of operators equivalent to symmetric powers of the differential operator of the elliptic integral E E. Each fN,N(j) f^{(j)}_{N,N} is expressed polynomially in terms of the elliptic integrals E E and K K. The scaling limit of these differential operators breaks the direct sum structure but not the ``Russian doll'' structure. The previous λ \lambda-extensions, C(N,N;λ) C(N,N; \lambda) are, for singled-out values λ=cos(πm/n) \lambda= \cos(\pi m/n) (m,nm, n integers), also solutions of linear differential equations. These solutions of Painlev\'e VI are actually algebraic functions, being associated with modular curves.Comment: 39 page
    corecore