325 research outputs found
The DNA Structure and Sequence Preferences of WRN Underlie Its Function in Telomeric Recombination Events
Telomeric abnormalities caused by loss of function of the RecQ helicase WRN are linked to the multiple premature ageing phenotypes that characterize Werner syndrome. Here we examine WRN\u27s role in telomeric maintenance, by comparing its action on a variety of DNA structures without or with telomeric sequences. Our results show that WRN clearly prefers to act on strand invasion intermediates in a manner that favours strand invasion and exchange. Moreover, WRN unwinding of these recombination structures is further enhanced when the invading strand contains at least three G-rich single-stranded telomeric repeats. These selectivities are most pronounced at NaCl concentrations within the reported intranuclear monovalent cation concentration range, and are partly conferred by WRN\u27s C-terminal region. Importantly, WRN\u27s specificity for the G-rich telomeric sequence within this precise structural context is particularly relevant to telomere metabolism and strongly suggests a physiological role in telomeric recombination processes, including T-loop dynamics
Development and characterisation of novel anti-C5 monoclonal antibodies capable of inhibiting complement in multiple species
Over the last decade there has been an explosion in complement therapies; one third of the drugs in the clinic or in development target C5 protein. Eculizumab, a monoclonal antibody (mAb) that binds C5 and blocks its cleavage by the convertase, is the current gold standard treatment for atypical haemolytic uremic syndrome (aHUS) and paroxysmal nocturnal haemoglobinuria (PNH) and in clinical trials for many other diseases. Here we describe a panel of novel antiâC5 mAb, including mAb that, like Eculizumab, are efficient inhibitors of complement but, unlike Eculizumab, inhibit across species, including human, rat, rabbit and guinea pig. Several inhibitory antiâC5 mAb were identified and characterised for C5 binding and lytic inhibitory capacity in comparison to current therapeutic antiâC5 mAb; three clones, 4G2, 7D4 and 10B6, were selected and further characterised for ligand specificity and affinity and crossâspecies inhibitory activity. The mAb 10B6 was humanâspecific while mAb 4G2 and 7D4 efficiently inhibited lysis by human, rabbit and rat serum, and weakly inhibited guinea pig complement; 7D4 also weakly inhibited mouse complement in vitro The rat C5âcrossâreactive mAb 4G2, when administered intraperitoneally in a rat model of myasthenia gravis, effectively blocked the disease and protected muscle endplates from destruction. To our knowledge this is the first report of an antiâC5 function blocking mAb that permits preclinical studies in rats
Morphology, phylogeny, and taxonomy of Microthlaspi (Brassicaceae: Coluteocarpeae) and related genera
The genus Thlaspi has been variously subdivided since its description by Linnaeus in 1753, but due to similarities in fruit shape several segregates have still not gained broad recognition, despite the fact that they are not directly related to Thlaspi. This applies especially to segregates now considered to belong to the tribe Coluteocarpeae, which includes several well-studied taxa, e.g., Noccaea caerulescens (syn. Thlaspi caerulescens), and the widespread Microthlaspi perfoliatum (syn. Thlaspi perfoliatum). The taxonomy of this tribe is still debated, as a series of detailed monographs on Coluteocarpeae was not published in English and a lack of phylogenetic resolution within this tribe was found in previous studies. The current study presents detailed phylogenetic investigations and a critical review of morphological features, with focus on taxa previously placed in Microthlaspi. Based on one nuclear (ITS) and two chloroplast (matK, trnL-F) loci, four strongly supported major groups were recovered among the Coluteocarpeae genera included, corresponding to Ihsanalshehbazia gen. nov., Friedrichkarlmeyeria gen. nov., Microthlaspi s.str., and Noccaea s.l. In addition, two new species of Microthlaspi, M. sylvarum-cedri sp. nov. and M. mediterraneo-orientale sp. nov., were discovered, which are well supported by both morphological and molecular data. Furthermore, M. erraticum comb. nov. (diploid) and M. perfoliatum s.str. (polyploid) were shown to be distinct species, phylogenetically widely separate, but with some overlap in several morphological characters. Detailed descriptions, notes on taxonomy, geographical distribution, and line drawings for the new species and each species previously included in Microthlaspi are provided. In addition, the current taxonomic state of the tribe Coluteocarpeae is briefly discussed and it is concluded that while several annual taxa are clearly distinct from Noccaea, many perennial taxa, after thorough phylogenetic and morphological investigations, may have to be merged with this genus. © International Association for Plant Taxonomy (IAPT) 2016
Complement component C5 and C6 mutation screening indicated in meningococcal disease in South Africa
Background. Invasive meningococcal disease (MD), caused by Neisseria meningitidis infection, is endemic in South Africa, with a seasonal peak in winter and spring. There were 2 432 laboratory-confirmed cases between 2006 and 2010. Human deficiency of the fifth complement component (C5D) or complete absence of the sixth component (C6Q0) leads to increased risk of MD, which is often recurrent. All attacks are serious and can lead to death or severe long-term consequences.
Objective. To determine the frequency of specific disease-associated C5 and C6 gene mutations in patients presenting with MD in the Western Cape.
Results. In 109 patients with confirmed invasive MD investigated for local mutations known to cause C5D and C6Q0, 3 were C5D and 11 were C6Q0. In 46 black patients tested, 3 were C5D and 7 were C6Q0. In 63 coloured patients, none were C5D and 4 were C6Q0. All deficient patients were followed up and offered prophylaxis.
Conclusion. C5D and C6Q0 are not rare genetic diseases in South Africa and affected patients are susceptible to repeated MD; 12.8% of MD patients tested were C5D or C6Q0. Blacks were at greatest risk with 21.7% being either C5D or C6Q0. We strongly recommend diagnostic testing for complement C5 and C6 deficiency in the routine work-up of all MD cases in South Africa. Prophylactic treatment should be started in susceptible individuals
A Case-Control Study of Trace-Element Status and Lung Cancer in Appalachian Kentucky
Appalachian Kentucky (App KY) leads the nation in lung cancer incidence and mortality. Trace elements, such as As, have been associated with lung cancers in other regions of the country and we hypothesized that a population-based study would reveal higher trace element concentrations in App KY individuals with cancer compared to controls. Using toenail and drinking water trace element concentrations, this study investigated a possible association between lung cancer incidence and trace-element exposure in residents of this region. This population-based case-control study had 520 subjects, and 367 subjects provided toenail samples. Additionally, we explored the relationship between toenail and fingernail trace-element concentrations to determine if fingernails could be used as a surrogate for toenails when patients are unable to provide toenail samples. We found that, contrary to our initial hypothesis, trace element concentrations (Al, As, Cr, Mn, Co, Fe, Ni, Cu, Se, and Pb) were not higher in cancer cases than controls with the exception of Zn where concentrations were slightly higher in cases. In fact, univariate logistic regression models showed that individuals with lower concentrations of several elements (Al, Mn, Cr, and Se) were more likely to have lung cancer, although only Mn was significant in multivariate models which controlled for confounding factors. While drinking water concentrations of Al, Cr and Co were positively related to cancer incidence in univariate models, only Co remained significant in multivariate models. However, since the drinking water concentrations were extremely low and not reflected in the toenail concentrations, the significance of this finding is unclear. We also found that fingernail concentrations were not consistently predictive of toenail concentrations, indicating that fingernails should not be used as surrogates for toenails in future studies
Complement component C5 and C6 mutation screening indicated in meningococcal disease in South Africa
BACKGROUND:
Invasive meningococcal disease (MD), caused by Neisseria meningitidis infection, is endemic in South Africa, with a seasonal peak in winter and spring. There were 2 432 laboratory-confirmed cases between 2006 and 2010. Human deficiency of the fifth complement component (C5D) or complete absence of the sixth component (C6Q0) leads to increased risk of MD, which is often recurrent. All attacks are serious and can lead to death or severe long-term consequences.
OBJECTIVE:
To determine the frequency of specific disease-associated C5 and C6 gene mutations in patients presenting with MD in the Western Cape.
RESULTS:
In 109 patients with confirmed invasive MD investigated for local mutations known to cause C5D and C6Q0, 3 were C5D and 11 were C6Q0. In 46 black patients tested, 3 were C5D and 7 were C6Q0. In 63 coloured patients, none were C5D and 4 were C6Q0. All deficient patients were followed up and offered prophylaxis.
CONCLUSION:
C5D and C6Q0 are not rare genetic diseases in South Africa and affected patients are susceptible to repeated MD; 12.8% of MD patients tested were C5D or C6Q0. Blacks were at greatest risk with 21.7% being either C5D or C6Q0. We strongly recommend diagnostic testing for complement C5 and C6 deficiency in the routine work-up of all MD cases in South Africa. Prophylactic treatment should be started in susceptible individuals
Invasive meningococcal disease in three siblings with hereditary deficiency of the 8th component of complement: Evidence for the importance of an early diagnosis
Deficiency of the eighth component of complement (C8) is a very rare primary immunodeficiency, associated with invasive, recurrent infections mainly caused by Neisseria species. We report functional and immunochemical C8 deficiency diagnosed in three Albanian siblings who presented with severe meningococcal infections at the age of 15 years, 4 years and 17 months, respectively. The youngest suffered serious complications (necrosis of fingers and toes requiring amputation).
METHODS:
Functional activity of the classical, alternative and mannose-binding lectin complement pathways was measured in serum from the 3 siblings and their parents (37-year-old woman and 42-year-old man). Forty healthy subjects (20 males and 20 females aged 4-38 years) served as normal controls. Serum complement factors were measured by haemolytic assays and immunoblotting. Sequence DNA analysis of the C8B gene was performed.
RESULTS:
Analyses of the three complement pathways revealed no haemolytic activity and also absence of C8beta in serum samples from all three siblings. The genetic analysis showed that the three siblings were homozygous for the p.Arg428* mutation in the C8B gene on chromosome 1p32 (MIM 120960). The parents were heterozygous for the mutation and presented normal complement activities. A 2-year follow-up revealed no further infective episodes in the siblings after antibiotic prophylaxis and meningococcal vaccination.
CONCLUSIONS:
Complement deficiencies are rare and their occurrence is often underestimated. In presence of invasive meningococcal infection, we highlight the importance of complement screening in patients and their relatives in order to discover any genetic defects which would render necessary prophylaxis to prevent recurrent infections and severe complications
The Ku-binding motif is a conserved module for recruitment and stimulation of non-homologous end-joining proteins
The Ku-binding motif (KBM) is a short peptide module first identified in APLF that we now show is also present in Werner syndrome protein (WRN) and in Modulator of retrovirus infection homologue (MRI). We also identify a related but functionally distinct motif in XLF, WRN, MRI and PAXX, which we denote the XLF-like motif. We show that WRN possesses two KBMs; one at the N terminus next to the exonuclease domain and one at the C terminus next to an XLF-like motif. We reveal that the WRN C-terminal KBM and XLF-like motif function cooperatively to bind Ku complexes and that the N-terminal KBM mediates Ku-dependent stimulation of WRN exonuclease activity. We also show that WRN accelerates DSB repair by a mechanism requiring both KBMs, demonstrating the importance of WRN interaction with Ku. These data define a conserved family of KBMs that function as molecular tethers to recruit and/or stimulate enzymes during NHEJ
Acetylation Regulates WRN Catalytic Activities and Affects Base Excision DNA Repair
Background: The Werner protein (WRN), defective in the premature aging disorder Werner syndrome, participates in a number of DNA metabolic processes, and we have been interested in the possible regulation of its function in DNA repair by post-translational modifications. Acetylation mediated by histone acetyltransferases is of key interest because of its potential importance in aging, DNA repair and transcription. Methodology/Principal Findings: Here, we have investigated the p300 acetylation mediated changes on the function of WRN in base excision DNA repair (BER). We show that acetylation of WRN increases in cells treated with methyl methanesulfonate (MMS), suggesting that acetylation of WRN may play a role in response to DNA damage. This hypothesis is consistent with our findings that acetylation of WRN stimulates its catalytic activities in vitro and in vivo, and that acetylated WRN enhances pol b-mediated strand displacement DNA synthesis more than unacetylated WRN. Furthermore, we show that cellular exposure to the histone deacetylase inhibitor sodium butyrate stimulates long patch BER in wild type cells but not in WRN depleted cells, suggesting that acetylated WRN participates significantly in this process. Conclusion/Significance: Collectively, these results provide the first evidence for a specific role of p300 mediated WRN acetylation in regulating its function during BER
- âŠ