7,328 research outputs found

    Nonmodal energy growth and optimal perturbations in compressible plane Couette flow

    Full text link
    Nonmodal transient growth studies and estimation of optimal perturbations have been made for the compressible plane Couette flow with three-dimensional disturbances. The maximum amplification of perturbation energy over time, Gmax⁥G_{\max}, is found to increase with increasing Reynolds number Re{\it Re}, but decreases with increasing Mach number MM. More specifically, the optimal energy amplification GoptG_{\rm opt} (the supremum of Gmax⁥G_{\max} over both the streamwise and spanwise wavenumbers) is maximum in the incompressible limit and decreases monotonically as MM increases. The corresponding optimal streamwise wavenumber, αopt\alpha_{\rm opt}, is non-zero at M=0, increases with increasing MM, reaching a maximum for some value of MM and then decreases, eventually becoming zero at high Mach numbers. While the pure streamwise vortices are the optimal patterns at high Mach numbers, the modulated streamwise vortices are the optimal patterns for low-to-moderate values of the Mach number. Unlike in incompressible shear flows, the streamwise-independent modes in the present flow do not follow the scaling law G(t/Re)∌Re2G(t/{\it Re}) \sim {\it Re}^2, the reasons for which are shown to be tied to the dominance of some terms in the linear stability operator. Based on a detailed nonmodal energy analysis, we show that the transient energy growth occurs due to the transfer of energy from the mean flow to perturbations via an inviscid {\it algebraic} instability. The decrease of transient growth with increasing Mach number is also shown to be tied to the decrease in the energy transferred from the mean flow (E˙1\dot{\mathcal E}_1) in the same limit

    The Decompostion of Potassium Chlorate in the Presence of Iron Oxide

    Get PDF
    The decomposition temperature of potassium chlorate is known to be lowered by the presence of varying quantities of different substances, especially oxides, which act in the capacity of catalytic agents in causing the evolution of oxygen. In most instances chlorine is also liberated. This investigation on the effect of iron oxide was begun as one of a series of experiments to determine the effectiveness of various oxides in catalyzing the decomposition of potassium chlorate

    Additional Soft Jets in ttˉ{\rm t\bar{t}} Production at the Tevatron \pp Collider

    Full text link
    A large fraction of top quark events in \pp collisions at 1.8\ \TeV will contain additional soft hadronic jets from gluon bremsstrahlung off the quarks and gluons in the hard processes \qq, gg \to \tt \to \bb \ww. These extra jets can cause complications when attempting to reconstruct mtm_t from the invariant mass of combinations of final-state quarks and leptons. We show how such soft radiation cannot be unambiguously associated with either initial-state radiation or or with final-state radiation off the bb quarks. The top quarks can radiate too, and in fact the pattern of radiation has a very rich structure, which depends on the orientation of the final-state particles with respect to each other and with respect to the beam. We calculate the full radiation pattern of soft jets in the soft gluon approximation and compare with several approximate forms which are characteristic of parton shower Monte Carlos. The implications for top mass measurements are discussed.Comment: plain LaTeX, 13 pages plus 9 figures included as a separate uuencoded file (or avail. from authors); DTP/94/60, UR-136

    Linear stability, transient energy growth and the role of viscosity stratification in compressible plane Couette flow

    Full text link
    Linear stability and the non-modal transient energy growth in compressible plane Couette flow are investigated for two prototype mean flows: (a) the {\it uniform shear} flow with constant viscosity, and (b) the {\it non-uniform shear} flow with {\it stratified} viscosity. Both mean flows are linearly unstable for a range of supersonic Mach numbers (MM). For a given MM, the critical Reynolds number (ReRe) is significantly smaller for the uniform shear flow than its non-uniform shear counterpart. An analysis of perturbation energy reveals that the instability is primarily caused by an excess transfer of energy from mean-flow to perturbations. It is shown that the energy-transfer from mean-flow occurs close to the moving top-wall for ``mode I'' instability, whereas it occurs in the bulk of the flow domain for ``mode II''. For the non-modal analysis, it is shown that the maximum amplification of perturbation energy, Gmax⁥G_{\max}, is significantly larger for the uniform shear case compared to its non-uniform counterpart. For α=0\alpha=0, the linear stability operator can be partitioned into L∌Lˉ+Re2Lp{\cal L}\sim \bar{\cal L} + Re^2{\cal L}_p, and the ReRe-dependent operator Lp{\cal L}_p is shown to have a negligibly small contribution to perturbation energy which is responsible for the validity of the well-known quadratic-scaling law in uniform shear flow: G(t/Re)∌Re2G(t/{\it Re}) \sim {\it Re}^2. A reduced inviscid model has been shown to capture all salient features of transient energy growth of full viscous problem. For both modal and non-modal instability, it is shown that the {\it viscosity-stratification} of the underlying mean flow would lead to a delayed transition in compressible Couette flow

    Probing Electroweak Top Quark Couplings at Hadron Colliders

    Full text link
    We consider QCD t\bar{t}\gamma and t\bar{t}Z production at hadron colliders as a tool to measure the tt\gamma and ttZ couplings. At the Tevatron it may be possible to perform a first, albeit not very precise, test of the tt\gamma vector and axial vector couplings in t\bar{t}\gamma production, provided that more than 5 fb^{-1} of integrated luminosity are accumulated. The t\bar{t}Z cross section at the Tevatron is too small to be observable. At the CERN Large Hadron Collider (LHC) it will be possible to probe the tt\gamma couplings at the few percent level, which approaches the precision which one hopes to achieve with a next-generation e^+e^- linear collider. The LHC's capability of associated QCD t\bar{t}V (V=\gamma, Z) production has the added advantage that the tt\gamma and ttZ couplings are not entangled. For an integrated luminosity of 300 fb^{-1}, the ttZ vector (axial vector) coupling can be determined with an uncertainty of 45-85% (15-20%), whereas the dimension-five dipole form factors can be measured with a precision of 50-55%. The achievable limits improve typically by a factor of 2-3 for the luminosity-upgraded (3 ab^{-1}) LHC.Comment: Revtex3, 30 pages, 9 Figures, 6 Table

    Periodic magnetorotational dynamo action as a prototype of nonlinear magnetic field generation in shear flows

    Get PDF
    The nature of dynamo action in shear flows prone to magnetohydrodynamic instabilities is investigated using the magnetorotational dynamo in Keplerian shear flow as a prototype problem. Using direct numerical simulations and Newton's method, we compute an exact time-periodic magnetorotational dynamo solution to the three-dimensional dissipative incompressible magnetohydrodynamic equations with rotation and shear. We discuss the physical mechanism behind the cycle and show that it results from a combination of linear and nonlinear interactions between a large-scale axisymmetric toroidal magnetic field and non-axisymmetric perturbations amplified by the magnetorotational instability. We demonstrate that this large scale dynamo mechanism is overall intrinsically nonlinear and not reducible to the standard mean-field dynamo formalism. Our results therefore provide clear evidence for a generic nonlinear generation mechanism of time-dependent coherent large-scale magnetic fields in shear flows and call for new theoretical dynamo models. These findings may offer important clues to understand the transitional and statistical properties of subcritical magnetorotational turbulence.Comment: 10 pages, 6 figures, accepted for publication in Physical Review

    On the nature of XTE J0421+560/CI Cam

    Get PDF
    We present the results of the analysis of RXTE, BATSE and optical/infrared data of the 1998 outburst of the X-ray transient system XTE J0421+560 (CI Cam). The X-ray outburst shows a very fast decay (initial e-folding time ~0.5 days, slowing down to ~2.3 days). The X-ray spectrum in the 2-25 keV band is complex, softening considerably during decay and with strongly variable intrinsic absorption. A strong iron emission line is observed. No fast time variability is detected (<0.5 % rms in the 1-4096 Hz band at the outburst peak). The analysis of the optical/IR data suggests that the secondary is a B[e] star surrounded by cool dust and places the system at a distance of >~ 2 kpc. At this distance the peak 2-25 keV luminosity is ~4 x 10^37 erg/s. We compare the properties of this peculiar system with those of the Be/NS LMC transient A 0538-66 and suggest that CI Cam is of similar nature. The presence of strong radio emission during outburst indicates that the compact object is likely to be a black hole or a weakly magnetized neutron star.Comment: Accepted for publication on The Astrophysical Journal, July 199

    Structural and electrical transport properties of superconducting Au{0.7}In{0.3} films: A random array of superconductor-normal metal-superconductor (SNS) Josephson junctions

    Full text link
    The structural and superconducting properties of Au{0.7}In{0.3} films, grown by interdiffusion of alternating Au and In layers, have been studied. The films were found to consist of a uniform solid solution of Au{0.9}In{0.1}, with excess In precipitated in the form of In-rich grains of various Au-In phases (with distinct atomic compositions), including intermetallic compounds. As the temperature was lowered, these individual grains became superconducting at a particular transition temperature (Tc), determined primarily by the atomic composition of the grain, before a fully superconducting state of zero resistance was established. From the observed onset Tc, it was inferred that up to three different superconducting phases could have formed in these Au{0.7}In{0.3} films, all of which were embedded in a uniform Au{0.9}In{0.1} matrix. Among these phases, the Tc of a particular one, 0.8 K, is higher than any previously reported for the Au-In system. The electrical transport properties were studied down to low temperatures. The transport results were found to be well correlated with those of the structural studies. The present work suggests that Au{0.7}In{0.3} can be modeled as a random array of superconductor-normal metal-superconductor (SNS) Josephson junctions. The effect of disorder and the nature of the superconducting transition in these Au{0.7}In{0.3} films are discussed.Comment: 8 text pages, 10 figures in one separate PDF file, submitted to PR
    • 

    corecore