10,802 research outputs found

    Titanium alloy stress corrosion cracking in presence of dinitrogen tetroxide

    Get PDF
    Study resulting in a satisfactory stress corrosion cracking test with extremely consistent results produced six new analytical methods. Methods detect and determine differences in the minor constituent composition of different types of dinitrogen tetroxide

    Age-Related Decrease in the Schaffer Collateral-Evoked EPSP in Awake, Freely, Behaving Rats

    Get PDF
    Synaptic response size in the CA1 region of the hippocampus in aged rats is reduced for a given stimulus intensity, compared with that elicited in young rats. Consistent with the in vitro findings of reduced Schaffer collateral-evoked CA1 EPSPs in old rats, the population currents evoked to iontophoretically applied AMPA are also smaller relative to the presynaptic fiber potential amplitude. On the other hand, the size of the presynaptic fiber potential and amplitude of unitary intra-cellularly recorded EPSP responses do not change across age in the CA1 region. These electrophysiological findings are consistent with the hypothesis that old rats have fewer functional synaptic contacts per Schaffer collateral axon than do young rats. The possibility that this age change arises as a result of a differential tissue recovery response to in vitro preparation was examined in the present study. CA1 presynaptic fiber potential and EPSP amplitudes evoked by the stimulation of Schaffer collateral afferents were studied in intact, freely behaving young and old rats. We confirmed in vivo the pattern of electrophysiophysiological results previously reported in vitro and found significant correlations between the synaptic response amplitudes and the accuracy of spatial behavior in the Morris swim task. The data suggest that changes in functional connectivity of old rats may be a significant contributor to cognitive changes during aging

    Non-Thermal Emission from AGN Coronae

    Full text link
    Accretion disk coronae are believed to account for X-ray emission in Active Galactic Nuclei (AGNs). In this paper the observed emission is assumed to be due to a population of relativistic, non-thermal electrons (e.g. produced in a flare) injected at the top of an accretion disk magnetic loop. While electrons stream along magnetic field lines their energy distribution evolves in time essentially because of inverse Compton and synchrotron losses. The corresponding time dependent emission due, in the X-ray energy range, to the inverse Compton mechanism, has been computed. Since the typical decay time of a flare is shorter than the integration time for data acquisition in the X-ray domain, the resulting spectrum is derived as the temporal mean of the real, time-dependent, emission, as originated by a series of consecutive and identical flares. The model outcome is compared to both the broad band BeppoSAX X-ray data of the bright Seyfert 1 NGC 5548, and to a few general X-ray spectral properties of Seyfert 1s as a class. The good agreement between model and observations suggests that the presently proposed non-thermal, non-stationary model could be a plausible explanation of AGN X-ray emission, as an alternative to thermal coronae models.Comment: 15 pages, 4 postscript figure

    Extended sudden approximation model for high-energy nucleon removal reactions

    Full text link
    A model based on the sudden approximation has been developed to describe high energy single nucleon removal reactions. Within this approach, which takes as its starting point the formalism of Hansen \cite{Anne2}, the nucleon-removal cross section and the full 3-dimensional momentum distributions of the core fragments including absorption, diffraction, Coulomb and nuclear-Coulomb interference amplitudes, have been calculated. The Coulomb breakup has been treated to all orders for the dipole interaction. The model has been compared to experimental data for a range of light, neutron-rich psd-shell nuclei. Good agreement was found for both the inclusive cross sections and momentum distributions. In the case of 17^{17}C, comparison is also made with the results of calculations using the transfer-to-the-continuum model. The calculated 3-dimensional momentum distributions exhibit longitudinal and transverse momentum components that are strongly coupled by the reaction for s-wave states, whilst no such effect is apparent for d-waves. Incomplete detection of transverse momenta arising fromlimited experimental acceptances thus leads to a narrowing of the longitudinal distributions for nuclei with significant s-wave valence neutron configurations, as confirmed by the data. Asymmetries in the longitudinal momentum distributions attributed to diffractive dissociation are also explored.Comment: 16 figures, submitted to Phys. Rev.

    The swan song: the disappearance of the nucleus of NGC 4051 and the echo of its past glory

    Get PDF
    BeppoSAX observed the low-luminous Seyfert 1 Galaxy NGC4051 in a ultra-dim X-ray state. The 2-10 keV flux (1.26 x 10^{-12} erg/cm^2/s) was about 20 times fainter than its historical average value, and remained steady along the whole observation (~2.3 days). The observed flat spectrum (\Gamma ~ 0.8) and intense iron line (EW ~600 eV) are best explained assuming that the active nucleus has switched off, leaving only a residual reflection component visible.Comment: 5 pages, Latex, 3 Postscript figures, accepted for publication in MNRA
    • …
    corecore