98 research outputs found

    Release of Spring 2013 Spanish-Language MCAS Test Items

    Get PDF
    Trace atmospheric concentrations of carboxylic acids have a potent effect upon the environment, where they modulate aqueous chemistry and perturb Earth’s radiative balance. Halogenated carboxylic acids are produced by the tropospheric oxidation of halocarbons and are considered persistent pollutants because of their weak tropospheric and aqueous sinks. However, recent studies reported rapid reactions between selected carboxylic acids and Criegee intermediates, which may provide an efficient gas-phase removal process. Accordingly, absolute rate coefficients of two Criegee intermediates, CH<sub>2</sub>OO and (CH<sub>3</sub>)<sub>2</sub>COO, with a suite of carboxylic acids (HCOOH, CH<sub>3</sub>COOH, CClF<sub>2</sub>COOH, CF<sub>3</sub>CF<sub>2</sub>COOH, and pyruvic acid) were measured with a view to develop a structure–activity relationship (SAR). This SAR is based upon the dipole-capture model and predicts the reactivity of many further combinations of Criegee intermediates and carboxylic acids. Complementary synchrotron-based photoionization mass spectrometry measurements demonstrate that these reactions produce stable ester adducts, with a reaction coordinate involving transfer of the acidic hydrogen from the carboxylic acid to the terminal oxygen of the Criegee intermediate. The adduct products are predicted to have low vapor pressures, and coupling of this chemistry with a global atmospheric chemistry and transport model shows significant production of secondary organic aerosol at locations rich in biogenic alkene emissions

    Direct Measurements of Unimolecular and Bimolecular Reaction Kinetics of the Criegee Intermediate (CH 3 ) 2 COO

    Get PDF
    The Criegee intermediate acetone oxide, (CH3)2COO, is formed by laser photolysis of 2,2-diiodopropane in the presence of O2 and characterized by synchrotron photoionization mass spectrometry and by cavity ring-down ultraviolet absorption spectroscopy. The rate coefficient of the reaction of the Criegee intermediate with SO2 was measured using photoionization mass spectrometry and pseudo-first-order methods to be (7.3 ± 0.5) × 10–11 cm3 s–1 at 298 K and 4 Torr and (1.5 ± 0.5) × 10–10 cm3 s–1 at 298 K and 10 Torr (He buffer). These values are similar to directly measured rate coefficients of anti-CH3CHOO with SO2, and in good agreement with recent UV absorption measurements. The measurement of this reaction at 293 K and slightly higher pressures (between 10 and 100 Torr) in N2 from cavity ring-down decay of the ultraviolet absorption of (CH3)2COO yielded even larger rate coefficients, in the range (1.84 ± 0.12) × 10–10 to (2.29 ± 0.08) × 10–10 cm3 s–1. Photoionization mass spectrometry measurements with deuterated acetone oxide at 4 Torr show an inverse deuterium kinetic isotope effect, kH/kD = (0.53 ± 0.06), for reactions with SO2, which may be consistent with recent suggestions that the formation of an association complex affects the rate coefficient. The reaction of (CD3)2COO with NO2 has a rate coefficient at 298 K and 4 Torr of (2.1 ± 0.5) × 10–12 cm3 s–1 (measured with photoionization mass spectrometry), again similar to rate for the reaction of anti-CH3CHOO with NO2. Cavity ring-down measurements of the acetone oxide removal without added reagents display a combination of first- and second-order decay kinetics, which can be deconvolved to derive values for both the self-reaction of (CH3)2COO and its unimolecular thermal decay. The inferred unimolecular decay rate coefficient at 293 K, (305 ± 70) s–1, is similar to determinations from ozonolysis. The present measurements confirm the large rate coefficient for reaction of (CH3)2COO with SO2 and the small rate coefficient for its reaction with water. Product measurements of the reactions of (CH3)2COO with NO2 and with SO2 suggest that these reactions may facilitate isomerization to 2-hydroperoxypropene, possibly by subsequent reactions of association products
    corecore