53 research outputs found

    Comparison Between an Artificial Neural Network and Logistic Regression in Predicting Long Term Kidney Transplantation Outcome

    Get PDF
    Predicting clinical outcome following a specific treatment is a challenge that sees physicians and researchers alike sharing the dream of a crystal ball to read into the future. In Medicine, several tools have been developed for the prediction of outcomes following drug treatment and other medical interventions. The standard approach for a binary outcome is to use logistic regression (LR) [1,2] but over the past few years artificial neural networks (ANNs) have become an increasingly popular alternative to LR analysis for prognostic and diagnostic classification in clinical medicine [3]. The growing interest in ANNs has mainly been triggered by their ability to mimic the learning processes of the human brain. The network operates in a feed-forward mode from the input layer through the hidden layers to the output layer. Exactly what interactions are modeled in the hidden layers is still under study. Each layer within the network is made up of computing nodes with remarkable data processing abilities. Each node is connected to other nodes of a previous layer through adaptable inter-neuron connection strengths known as synaptic weights. ANNs are trained for specific applications through a learning process and knowledge is usually retained as a set of connection weights [4]. The backpropagation algorithm and its variants are learning algorithms that are widely used in neural networks. With backpropagation, the input data is repeatedly presented to the network. Each time, the output is compared to the desired output and an error is computed. The error is then fed back through the network and used to adjust the weights in such a way that with each iteration it gradually declines until the neural model produces the desired outpu

    Stress granules induced by oxidative stress in cultured fibroblast from TDP-43 mutant ALS patients

    Get PDF
    Stress granules (SGs) are transient cytoplasmic aggregates that rapidly form when cells are exposed to stress and consist of large messenger ribonucleoprotein (mRNPs) complexes. The SGs seem to function as storage depots for translation silenced complex and are implicated in stress-induced inhibition of global protein synthesis. Protein aggregation, has been observed in several neurodegenerative diseases, including Amyotrophic Lateral Sclerosis (ALS). The protein TDP-43 (TAR DNA-Binding Protein-43), encoded by one of the ALS-causative gene (TARDBP), is a major constituent of pathological inclusions in this disease and it is seems to be implicated in the regulation of SGs. Therefore we investigated the different characteristics of SGs in human cultured fibroblasts from ALS patients carrying TARDBPA382T mutation (group 1) versus healthy subjects (group 2). The cells were exposed to stressful conditions using sodium arsenite (SA) at different concentrations (0.5 mM, 1 mM) and exposure times (30 min, 1h). Preliminary results showed, after 30 minutes, small and sporadic cytoplasmic inclusions immunostained for TIA-1(T-cell internal antigen-1), an early marker for SGs, in both groups of cells. After 1h, the TIA-1 immunostained granules were bright, copious and scattered into the cytosol. Interestingly, we observed a significantly higher number of cells exhibiting SGs in fibroblasts from healthy controls (66%) compared to ALS patients (34%). In parallel, we identified the RNA binding protein HuR-1 (Human antigen R) in a fraction of Tia-1 positive SGs, as well as TDP- 43 localized into the nucleus of all the cells. These data raise the possibility that TDP-43 may modulate the stress granule formation, contributing to the cellular response to acute stress. Moreover the TDP-43 may regulate gene expression as well as cellular recovery and survival, and consequently its mutation may contribute to the neurodegeneration

    HPRTSardinia: a new point mutation causing HPRT deficiency without Lesch–Nyhan disease

    Get PDF
    AbstractHypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency always causing hyperuricemia presents various degrees of neurological manifestations, the most severe which is Lesch–Nyhan syndrome. The HPRT gene is situated in the region Xq26-q27.2 and consists of 9 exons. At least 300 different mutations at different sites in the HPRT coding region from exon 1 to exon 9 have been identified. A new mutation in the HPRT gene has been determined in one patient with complete deficiency of erythrocyte activity, with hyperuricemia and gout but without Lesch–Nyhan disease. Analysis of cultured fibroblasts revealed minimal residual HPRT activity mainly when guanine was the substrate. Genomic DNA sequencing demonstrated patient's mother heterozygosity for the mutation and no mutation in her brother. The mutation consists in a C→T transversion at cDNA base 463 (C463T) in exon 6, resulting in proline to serine substitution at codon 155 (P155S). This mutation had not been reported previously and has been designated HPRTSardinia. The mutation identified in this patient allows some expression of functional enzyme in nucleated cells such as fibroblasts, indicating that such cell type may add further information to conventional blood analysis. A multicentre survey gathering patients with variant neurological forms could contribute to understand the pathophysiology of the neurobehavioral symptoms of HPRT deficiency

    Star-Related Lipid Transfer Protein 10 (STARD10): A Novel Key Player in Alcohol-Induced Breast Cancer Progression

    Get PDF
    Background: Ethanol abuse promotes breast cancer development, metastasis and recurrence stimulating mammary tumorigenesis by mechanisms that remain unclear. Normally, 35% of breast cancer is Erb-B2 Receptor Tyrosine Kinase 2 (ERBB2)-positive that predisposes to poor prognosis and relapse, while ethanol drinking leads to invasion of their ERBB2 positive cells triggering the phosphorylation status of mitogen-activated protein kinase. StAR-related lipid transfer protein 10 (STARD10) is a lipid transporter of phosphatidylcholine (PC) and phosphatidylethanolamine (PE); changes on membrane composition of PC and PE occur before the morphological tumorigenic events. Interestingly, STARD10 has been described to be highly expressed in 35–40% of ERBB2-positive breast cancers. In this study, we demonstrate that ethanol administration promotes STARD10 and ERBB2 expression that is significantly associated with increased cell malignancy and aggressiveness. Material and methods: We investigated the effect of ethanol on STARD10-ERBB2 cross-talk in breast cancer cells, MMTV-neu transgenic mice and in clinical ERBB2-positive breast cancer specimens with Western Blotting and Real-time PCR. We also examined the effects of their knockdown and overexpression on transient transfected breast cancer cells using promoter activity, MTT, cell migration, calcium and membrane fluidity assays in vitro. Results: Ethanol administration induces STARD10 and ERBB2 expression in vitro and in vivo. ERBB2 overexpression causes an increase in STARD10 expression, while overexpression of ERBB2’s downstream targets, p65, c-MYC, c-FOS or c-JUN induces STARD10 promoter activity, correlative of enhanced ERBB2 function. Ethanol and STARD10-mediated cellular membrane fluidity and intracellular calcium concentration impact ERBB2 signaling pathway as evaluated by enhanced p65 nuclear translocation and binding to both ERBB2 and STARD10 promoters. Conclusion: Our finding proved that STARD10 and ERBB2 positively regulate each other’s expression and function. Taken together, our data demonstrate that ethanol can modulate ERBB2’s function in breast cancer via a novel interplay with STARD10

    SUMOylation Protects FASN Against Proteasomal Degradation in Breast Cancer Cells Treated with Grape Leaf Extract

    Get PDF
    Existing therapeutic strategies for breast cancer are limited by tumor recurrence and drug-resistance. Antioxidant plant-derived compounds such as flavonoids reduce adverse outcomes and have been identified as a potential source of antineoplastic agent with less undesirable side effects. Here, we describe the novel regulation of fatty-acid synthase (FASN), the key enzyme in de novo fatty-acid synthesis, whereby Vitis vinifera L. cv Vermentino leaf hydroalcoholic extract lowers its protein stability that is regulated by small ubiquitin-like modifier (SUMO)ylation. The phenolic compounds characterization was performed by liquid chromatography–mass spectrometry (LC–MS), whereas mass spectrometry (LC–MS/MS), Western blotting/co-immunoprecipitation (Co-IP) and RT-PCR, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), clonogenicity assays, and FACS analysis were used to measure the expression of targets and tumorigenicity. Vermentino extract exhibits antitumorigenic effects, and we went on to determine that FASN and ubiquitin-conjugating enzyme 9 (UBC9), the sole E2 enzyme required for SUMOylation, were significantly reduced. Moreover, FASN was found SUMOylated in human breast cancer tissues and cell lines, and lack of SUMOylation caused by SUMO2 silencing reduced FASN protein stability. These results suggest that SUMOylation protects FASN against proteasomal degradation and may exert oncogenic activity through alteration of lipid metabolism, whereas Vermentino extract inhibits these effects which supports the additional validation of the therapeutic value of this compound in breast cancer.This research was supported by a grant from Cedars-Sinai Medical Center, ACB&P Division

    Human Leukocyte Antigen Complex and Other Immunogenetic and Clinical Factors Influence Susceptibility or Protection to SARS-CoV-2 Infection and Severity of the Disease Course. The Sardinian Experience

    Get PDF
    Aim: SARS-CoV-2 infection is a world-wide public health problem. Several aspects of its pathogenesis and the related clinical consequences still need elucidation. In Italy, Sardinia has had very low numbers of infections. Taking advantage of the low genetic polymorphism in the Sardinian population, we analyzed clinical, genetic and immunogenetic factors, with particular attention to HLA class I and II molecules, to evaluate their influence on susceptibility to SARS-CoV-2 infection and the clinical outcome. Method and Materials: We recruited 619 healthy Sardinian controls and 182 SARS-CoV-2 patients. Thirty-nine patients required hospital care and 143 were without symptoms, pauci-symptomatic or with mild disease. For all participants, we collected demographic and clinical data and analyzed the HLA allele and haplotype frequencies. Results: Male sex and older age were more frequent in hospitalized patients, none of whom had been vaccinated during the previous seasonal flu vaccination campaignes. Compared to the group of asymptomatic or pauci-symptomatic patients, hospitalized patients also had a higher frequency of autoimmune diseases and glucose-6-phosphate-dehydrogenase (G6PDH) deficiency. None of these patients carried the beta-thalassemia trait, a relatively common finding in the Sardinian population. The extended haplotype HLA-A*02:05, B*58:01, C*07:01, DRB1*03:01 [OR 0.1 (95% CI 0–0.6), Pc = 0.015] was absent in all 182 patients, while the HLA-C*04:01 allele and the three-loci haplotype HLA-A*30:02, B*14:02, C*08:02 [OR 3.8 (95% CI 1.8–8.1), Pc = 0.025] were more frequently represented in patients than controls. In a comparison between in-patients and home care patients, the HLA-DRB1*08:01 allele was exclusively present in the hospitalized patients [OR > 2.5 (95% CI 2.7–220.6), Pc = 0.024]. Conclusion: The data emerging from our study suggest that the extended haplotype HLA-A*02:05, B*58:01, C*07:01, DRB1*03:01 has a protective effect against SARS-CoV-2 infection in the Sardinian population. Genetic factors that resulted to have a negative influence on the disease course were presence of the HLA-DRB1*08:01 allele and G6PDH deficiency, but not the beta-thalassemic trait. Absence of influenza vaccination could be a predisposing factor for more severe disease

    Cross sectional evaluation of the gut-microbiome metabolome axis in an Italian cohort of IBD patients.

    Get PDF
    Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract of uncertain origin, which includes ulcerative colitis (UC) and Crohn's disease (CD). The composition of gut microbiota may change in IBD affected individuals, but whether dysbiosis is the cause or the consequence of inflammatory processes in the intestinal tissue is still unclear. Here, the composition of the microbiota and the metabolites in stool of 183 subjects (82 UC, 50 CD, and 51 healthy controls) were determined. The metabolites content and the microbiological profiles were significantly different between IBD and healthy subjects. In the IBD group, Firmicutes, Proteobacteria, Verrucomicrobia, and Fusobacteria were significantly increased, whereas Bacteroidetes and Cyanobacteria were decreased. At genus level Escherichia, Faecalibacterium, Streptococcus, Sutterella and Veillonella were increased, whereas Bacteroides, Flavobacterium, and Oscillospira decreased. Various metabolites including biogenic amines, amino acids, lipids, were significantly increased in IBD, while others, such as two B group vitamins, were decreased in IBD compared to healthy subjects. This study underlines the potential role of an inter-omics approach in understanding the metabolic pathways involved in IBD. The combined evaluation of metabolites and fecal microbiome can be useful to discriminate between healthy subjects and patients with IBD

    Genomic variants in the FTO gene are associated with sporadic amyotrophic lateral sclerosis in Greek patients

    Get PDF
    Background: Amyotrophic lateral sclerosis (ALS) is a devastating disease whose complex pathology has been associated with a strong genetic component in the context of both familial and sporadic disease. Herein, we adopted a next-generation sequencing approach to Greek patients suffering from sporadic ALS (together with their healthy counterparts) in order to explore further the genetic basis of sporadic ALS (sALS). Results: Whole-genome sequencing analysis of Greek sALS patients revealed a positive association between FTO and TBC1D1 gene variants and sALS. Further, linkage disequilibrium analyses were suggestive of a specific diseaseassociated haplotype for FTO gene variants. Genotyping for these variants was performed in Greek, Sardinian, and Turkish sALS patients. A lack of association between FTO and TBC1D1 variants and sALS in patients of Sardinian and Turkish descent may suggest a founder effect in the Greek population. FTO was found to be highly expressed in motor neurons, while in silico analyses predicted an impact on FTO and TBC1D1 mRNA splicing for the genomic variants in question. Conclusions: To our knowledge, this is the first study to present a possible association between FTO gene variants and the genetic etiology of sALS. In addition, the next-generation sequencing-based genomics approach coupled with the two-step validation strategy described herein has the potential to be applied to other types of human complex genetic disorders in order to identify variants of clinical significance

    Mapping of the Major Psoriasis-Susceptibility Locus (PSORS1) in a 70-Kb Interval around the Corneodesmosin Gene (CDSN)

    Get PDF
    Numerous putative susceptibility loci have been described for psoriasis. Among the loci confirmed in the literature, PSORS1 (the major histocompatibility complex at 6p21.3) has the strongest effect. Recent studies have highlighted a 200-kb candidate region. However, this region has not been well delimited, mainly because of the strong linkage equilibrium among the associated alleles. To finely map PSORS1, we set up a study using 17 polymorphic markers in a 525-kb interval around the human leucocyte antigen C locus (HLA-C). The results uncovered five loci with alleles strongly associated with psoriasis (Sidak-corrected P [P(c)] values from 1.8 × 10(−7) to .003), all structured in a psoriasis-susceptibility haplotype (PSH). Subsequent analysis of extended haplotypes showed that the PSH was not only present on the traditional psoriasis-susceptibility extended haplotypes (HLA-Cw6-B57, HLA-Cw6-B37, and HLA-Cw6-B13) but also on a haplotype of Sardinian origin (HLA-Cw7-B58) found to be associated with psoriasis (P(c)=.0009) because of an ancestral recombination with one of the susceptibility haplotypes carrying the HLA-Cw6 allele. Comparisons of the regions identical by descent among associated and nonassociated haplotypes highlighted a minimum region of 70 kb not recombinant with PSORS1, around the corneodesmosin (CDSN) gene

    Coronary artery aneurysm: management and association with abdominal aortic aneurysm

    No full text
    Coronary artery aneurysm (CAA) is a dilatation that exceeds 1.5 times the diameter of a normal adjacent coronary artery. Several studies suggest that pathogenetic mechanisms involved in this disease and in abdominal aortic aneurysm (AAA) are similar. Surgery for CAA is mandatory when the aneurysm is three to four times larger than the original vessel diameter. We reviewed our experience in the surgical treatment of this unusual disease and analyzed its association with AAA
    • …
    corecore