9,862 research outputs found
Clustering and Correlations at the Neutron Dripline
Some recent experimental studies of clustering and correlations within very
neutron-rich light nuclei are reviewed. In particular, the development of the
novel probes of neutron-neutron interferometry and Dalitz-plot analyses is
presented through the example of the dissociation of the two-neutron halo
system Be. The utility of high-energy proton radiative capture is
illustrated using a study of the He(p,) reaction. A new approach
to the production and detection of bound neutron clusters is also described,
and the observation of events with the characteristics expected for
tetraneutrons (n) liberated in the breakup of Be is discussed. The
prospects for future work, including systems beyond the neutron dripline, are
briefly outlined.Comment: Invited contribution to a topical issue on Exotic Nuclei of Les
Comptes Rendus de l'Academie des Sciences Paris, Serie IV. 29 pages,11
figures (format RevTex preprint
AXA General Insurance Ltd v Lord Advocate : analysis
Discusses the Supreme Court decision in AXA General Insurance Ltd, Petitioners on whether Scottish legislation which reversed a House of Lords ruling concerning the actionability of certain asbestos-related conditions breached insurers' rights
Nonmodal energy growth and optimal perturbations in compressible plane Couette flow
Nonmodal transient growth studies and estimation of optimal perturbations
have been made for the compressible plane Couette flow with three-dimensional
disturbances. The maximum amplification of perturbation energy over time,
, is found to increase with increasing Reynolds number ,
but decreases with increasing Mach number . More specifically, the optimal
energy amplification (the supremum of over both the
streamwise and spanwise wavenumbers) is maximum in the incompressible limit and
decreases monotonically as increases. The corresponding optimal streamwise
wavenumber, , is non-zero at M=0, increases with increasing
, reaching a maximum for some value of and then decreases, eventually
becoming zero at high Mach numbers. While the pure streamwise vortices are the
optimal patterns at high Mach numbers, the modulated streamwise vortices are
the optimal patterns for low-to-moderate values of the Mach number. Unlike in
incompressible shear flows, the streamwise-independent modes in the present
flow do not follow the scaling law , the reasons
for which are shown to be tied to the dominance of some terms in the linear
stability operator. Based on a detailed nonmodal energy analysis, we show that
the transient energy growth occurs due to the transfer of energy from the mean
flow to perturbations via an inviscid {\it algebraic} instability. The decrease
of transient growth with increasing Mach number is also shown to be tied to the
decrease in the energy transferred from the mean flow () in
the same limit
Linear stability, transient energy growth and the role of viscosity stratification in compressible plane Couette flow
Linear stability and the non-modal transient energy growth in compressible
plane Couette flow are investigated for two prototype mean flows: (a) the {\it
uniform shear} flow with constant viscosity, and (b) the {\it non-uniform
shear} flow with {\it stratified} viscosity. Both mean flows are linearly
unstable for a range of supersonic Mach numbers (). For a given , the
critical Reynolds number () is significantly smaller for the uniform shear
flow than its non-uniform shear counterpart. An analysis of perturbation energy
reveals that the instability is primarily caused by an excess transfer of
energy from mean-flow to perturbations. It is shown that the energy-transfer
from mean-flow occurs close to the moving top-wall for ``mode I'' instability,
whereas it occurs in the bulk of the flow domain for ``mode II''. For the
non-modal analysis, it is shown that the maximum amplification of perturbation
energy, , is significantly larger for the uniform shear case compared
to its non-uniform counterpart. For , the linear stability operator
can be partitioned into , and the
-dependent operator is shown to have a negligibly small
contribution to perturbation energy which is responsible for the validity of
the well-known quadratic-scaling law in uniform shear flow: . A reduced inviscid model has been shown to capture all salient
features of transient energy growth of full viscous problem. For both modal and
non-modal instability, it is shown that the {\it viscosity-stratification} of
the underlying mean flow would lead to a delayed transition in compressible
Couette flow
Remote Indigenous Housing and Infrastructure: Factors affecting successful regional governance
The provision of sufficient and sustainable remote indigenous housing and infrastructure in remote areas is still a major challenge for service providers. Attempts to meet this need have led to the development of a wide range of housing and housing-related programs in remote indigenous communities. There is a move from an external program-driven approach for housing, to a focus on sustainable local and regional systems of governance in indigenous communities to support the delivery and recurrent maintenance of housing and infrastructure. This paper reports on research into best practice case studies in remote area indigenous housing in WA and the NT. It includes community members’ perceptions of current programs as well as their suggestions for improvements. The lessons from the case studies provide direction for the development of strategies to support sustainable local and regional governance that, in turn, supports the development and maintenance of appropriate remote area indigenous housing. The challenges for sustainable regional governance in remote indigenous communities include the lack of economic development opportunities, the skills of local community members and the willingness and capacities of external service providers to take a community development approach
One-neutron removal reactions on neutron-rich psd-shell nuclei
A systematic study of high energy, one-neutron removal reactions on 23
neutron-rich, psd--shell nuclei (Z=5-9, A=12-25) has been carried out. The
longitudinal momentum distributions of the core fragments and corresponding
single-neutron removal cross sections are reported for reactions on a carbon
target. Extended Glauber model calculations, weighted by the spectroscopic
factors obtained from shell model calculations, are compared to the
experimental results. Conclusions are drawn regarding the use of such reactions
as a spectroscopic tool and spin-parity assignments are proposed for 15B, 17C,
19-21N, 21,23O, 23-25F. The nature of the weakly bound systems 14B and 15,17C
is discussed.Comment: 11 pages + 2 figure
The swan song: the disappearance of the nucleus of NGC 4051 and the echo of its past glory
BeppoSAX observed the low-luminous Seyfert 1 Galaxy NGC4051 in a ultra-dim
X-ray state. The 2-10 keV flux (1.26 x 10^{-12} erg/cm^2/s) was about 20 times
fainter than its historical average value, and remained steady along the whole
observation (~2.3 days). The observed flat spectrum (\Gamma ~ 0.8) and intense
iron line (EW ~600 eV) are best explained assuming that the active nucleus has
switched off, leaving only a residual reflection component visible.Comment: 5 pages, Latex, 3 Postscript figures, accepted for publication in
MNRA
- …