89 research outputs found

    Bacterial elicitors of the plant immune system : an overview and the way forward

    Get PDF
    A wide variety of root-associated bacterial mutualist species sensitize plant defenses to counteract pathogen infections. These beneficial bacteria produce myriad molecules that induce systemic resistance (ISR) in plants. Here, we review pioneering and recent studies describing the role of different ISR elicitors, including quorum sensing molecules, lipids, oligosaccharides, proteins, iron-chelating molecules, and volatiles. The concepts and differences between ISR and other plant immune responses, such as Localized Acquired Resistance (LAR) and Systemic Acquired Resistance (SAR) are also explored. We also highlight the necessity of understanding plant responses to such a wide chemical diversity of molecules. Finally, we discuss the urgency of using such elicitors to develop more sustainable agriculture by helping plant crops defend themselves from invading pathogens

    Agroecological management of the grey mould fungus Botrytis cinerea by plant growth-promoting bacteria

    Get PDF
    Botrytis cinerea is the causal agent of grey mould and one of the most important plant pathogens in the world because of the damage it causes to fruits and vegetables. Although the application of botrycides is one of the most common plant protection strategies used in the world, the application of plant-beneficial bacteria might replace botrycides facilitating agroecological production practices. Based on this, we reviewed the different stages of B. cinerea infection in plants and the biocontrol mechanisms exerted by plant-beneficial bacteria, including the well-known plant growth-promoting bacteria (PGPB). Some PGPB mechanisms to control grey mould disease include antibiosis, space occupation, nutrient uptake, ethylene modulation, and the induction of plant defence mechanisms. In addition, recent studies on the action of anti-Botrytis compounds produced by PGPB and how they damage the conidial and mycelial structures of the pathogen are reviewed. Likewise, the advantages of individual inoculations of PGPB versus those that require the joint action of antagonist agents (microbial consortia) are discussed. Finally, it should be emphasised that PGPB are an excellent option to prevent grey mould in different crops and their use should be expanded for environmentally friendly agricultural practices

    Fibrinogen and thrombin concentrations are critical for fibrin glue adherence in rat high-risk colon anastomoses

    Get PDF
    OBJECTIVE: Fibrin glues have not been consistently successful in preventing the dehiscence of high-risk colonic anastomoses. Fibrinogen and thrombin concentrations in glues determine their ability to function as sealants, healers, and/or adhesives. The objective of the current study was to compare the effects of different concentrations of fibrinogen and thrombin on bursting pressure, leaks, dehiscence, and morphology of high-risk ischemic colonic anastomoses using fibrin glue in rats. METHODS: Colonic anastomoses in adult female Sprague-Dawley rats (weight, 250-350 g) treated with fibrin glue containing different concentrations of fibrinogen and thrombin were evaluated at post-operative day 5. The interventions were low-risk (normal) or high-risk (ischemic) end-to-end colonic anastomoses using polypropylene sutures and topical application of fibrinogen at high (120 mg/mL) or low (40 mg/mL) concentrations and thrombin at high (1000 IU/mL) or low (500 IU/mL) concentrations. RESULTS: Ischemia alone, anastomosis alone, or both together reduced the bursting pressure. Glues containing a low fibrinogen concentration improved this parameter in all cases. High thrombin in combination with low fibrinogen also improved adherence exclusively in low-risk anastomoses. No differences were detected with respect to macroscopic parameters, histopathology, or hydroxyproline content at 5 days post-anastomosis. CONCLUSIONS: Fibrin glue with a low fibrinogen content normalizes the bursting pressure of high-risk ischemic left-colon anastomoses in rats at day 5 after surgery

    Recent developments in the application of plant growth-promoting drought adaptive rhizobacteria for drought mitigation

    Get PDF
    Drought intensity that has increased as a result of human activity and global warming poses a serious danger to agricultural output. The demand for ecologically friendly solutions to ensure the security of the world’s food supply has increased as a result. Plant growth-promoting rhizobacteria (PGPR) treatment may be advantageous in this situation. PGPR guarantees the survival of the plant during a drought through a variety of processes including osmotic adjustments, improved phytohormone synthesis, and antioxidant activity, among others and these mechanisms also promote the plant’s development. In addition, new developments in omics technology have improved our understanding of PGPR, which makes it easier to investigate the genes involved in colonizing plant tissue. Therefore, this review addresses the mechanisms of PGPR in drought stress resistance to summarize the most current omics-based and molecular methodologies for exploring the function of drought-responsive genes. The study discusses a detailed mechanistic approach, PGPR-based bioinoculant design, and a potential roadmap for enhancing their efficacy in combating drought stress

    Electrochemical study of H3PMo12 retention on Vulcan carbon grafted with NH2 and OH groups

    Get PDF
    In this work, we show a comparative study based on the effects of specific chemical functional groups (–OH, –NH2), grafted on Vulcan carbon (VC) with the incorporation of a specific polyoxometalate (POM), PMo12 (H3PMo12O40), to improve electrochemical performance. We observed a decrease in the specific surface area of the grafted matrices (VC-OH and VC-NH2) [1], and the same trend was observed for PMo12 (POM) incorporation. Our electrochemical studies showed low concentrations of POM in unmodified VCs and higher POM concentrations for grafted matrices (VC-OH and VC-NH2) after 500 voltammetric cycles, especially for the VC grafted with –OH groups (VC-OH-POM). Mechanisms have been proposed for POM interaction with the grafted groups in carbon, emphasizing the role of aqueous medium and redox activity of POM. Cyclic voltammograms suggested the POM anchoring through –OH groups with a strong interaction as a covalent bond, resulting in a surface coverage of 1.66 × 10−11 mol cm−2. Surface modifications could be extrapolated to other carbons, and the materials could be employed for different potential applications such as photocatalysis, amperometric sensors, fuel cells, and supercapacitors.Fil: Cuentas Gallegos, Ana Karina. Universidad Nacional Autónoma de México; México. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: López Cortina, S.. Universidad Autonoma de Nuevo Leon; MéxicoFil: Brousse, T.. Université de Nantes. Institut Des Materiaux Jean Rouxel; FranciaFil: Pacheco Catalán, D.. Centro de Investigación Científica de Yucatán; MéxicoFil: Fuentes Quezada, Eduardo. Centro de Investigación y Desarrollo Tecnológico en Electroquímica; México. Universidad Nacional Autónoma de México; México. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mosqueda, H.. Universidad Autonoma de Nuevo Leon; MéxicoFil: Orozco Gamboa, G.. Centro de Investigación y Desarrollo Tecnológico en Electroquímica; Méxic

    Screening of bacterial endophytes able to promote plant growth and increase salinity tolerance

    Get PDF
    Bacterial endophytes can colonize plant tissues without harming the plant. Instead, they are often able to increase plant growth and tolerance to environmental stresses. In this work, new strains of bacterial endophytes were isolated from three economically important crop plants (sorghum, cucumber and tomato) grown in three different regions in soils with different management. All bacterial strains were identified by 16S rRNA sequencing and characterized for plant beneficial traits. Based on physiological activities, we selected eight strains that were further tested for their antibiotic resistance profile and for the ability to efficiently colonize the interior of sorghum plants. According to the results of the re-inoculation test, five strains were used to inoculate sorghum seeds. Then, plant growth promotion activity was assessed on sorghum plants exposed to salinity stress. Only two bacterial endophytes increased plant biomass, but three of them delayed or reduced plant salinity stress symptoms. These five strains were then characterized for the ability to produce the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which is involved in the increase of stress tolerance. Pseudomonas brassicacearum SVB6R1 was the only strain that was able to produce this enzyme, suggesting that ACC deaminase is not the only physiological trait involved in conferring plant tolerance to salt stress in these bacterial strains

    Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms

    Get PDF
    The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.micres.2018.01.005 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/A plant microbiome includes a microbial community that typically interacts extensively with a plant. The plant microbiome can survive either inside or outside of plant tissues, performing various plant beneficial activities including biocontrol of potential phytopathogens and promotion of plant growth. An important part of the plant microbiome includes plant growth-promoting bacteria (PGPB) that commonly reside in the rhizosphere and phyllosphere, and as endophytic bacteria (inside of plant tissues). As new plant microbiome-manipulating strategies have emerged in recent years, we have critically reviewed relevant literature, chiefly from the last decade. We have analysed and compared the rhizosphere, phyllosphere and endosphere as potential ecosystems for manipulation, in order to improve positive interactions with the plant. In addition, many studies on the bioengineering of the endophyte microbiome and its potential impact on the core microbiome were analysed with respect to five different strategies, including host mediated and multi-generation microbiome selection, inoculation into soil and rhizosphere, inoculations into seeds or seedlings, tissue atomisation and direct injection into tissues or wounds. Finally, microbiome engineering presents a feasible strategy to solve multiple agriculture-associated problems in an eco-friendly way.Fundación Santoy

    Trichoderma species : our best fungal allies in the biocontrol of plant diseases : a review

    Get PDF
    Biocontrol agents (BCA) have been an important tool in agriculture to prevent crop losses due to plant pathogens infections and to increase plant food production globally, diminishing the necessity for chemical pesticides and fertilizers and offering a more sustainable and environmentally friendly option. Fungi from the genus Trichoderma are among the most used and studied microorganisms as BCA due to the variety of biocontrol traits, such as parasitism, antibiosis, secondary metabolites (SM) production, and plant defense system induction. Several Trichoderma species are well-known mycoparasites. However, some of those species can antagonize other organisms such as nematodes and plant pests, making this fungus a very versatile BCA. Trichoderma has been used in agriculture as part of innovative bioformulations, either just Trichoderma species or in combination with other plant-beneficial microbes, such as plant growth-promoting bacteria (PGPB). Here, we review the most recent literature regarding the biocontrol studies about six of the most used Trichoderma species, T. atroviride, T. harzianum, T. asperellum, T. virens, T. longibrachiatum, and T. viride, highlighting their biocontrol traits and the use of these fungal genera in Trichoderma-based formulations to control or prevent plant diseases, and their importance as a substitute for chemical pesticides and fertilizers

    Evolution of protein domain architectures

    Get PDF
    This chapter reviews current research on how protein domain architectures evolve. We begin by summarizing work on the phylogenetic distribution of proteins, as this will directly impact which domain architectures can be formed in different species. Studies relating domain family size to occurrence have shown that they generally follow power law distributions, both within genomes and larger evolutionary groups. These findings were subsequently extended to multi-domain architectures. Genome evolution models that have been suggested to explain the shape of these distributions are reviewed, as well as evidence for selective pressure to expand certain domain families more than others. Each domain has an intrinsic combinatorial propensity, and the effects of this have been studied using measures of domain versatility or promiscuity. Next, we study the principles of protein domain architecture evolution and how these have been inferred from distributions of extant domain arrangements. Following this, we review inferences of ancestral domain architecture and the conclusions concerning domain architecture evolution mechanisms that can be drawn from these. Finally, we examine whether all known cases of a given domain architecture can be assumed to have a single common origin (monophyly) or have evolved convergently (polyphyly). We end by a discussion of some available tools for computational analysis or exploitation of protein domain architectures and their evolution

    Distribution and infection of triatomines (Hemiptera: Reduviidae) by Trypanosoma cruzi in the state of Michoacán, Mexico

    Full text link
    An entomological study of triatomine species was carried out to assess their prevalence in 10 localities of the state of Michoacán, Mexico. Entomological indices were calculated to estimate the risk for vector-borne transmission of Trypanosoma cruzi to the human population in this area. Four triatomine species (Triatoma barberi, Triatoma dimidiata, Meccus pallidipennis and Meccus longipennis) were collected from the study area. This is the first report of M. longipennis and T. dimidiata in Michoacán. M. pallidipennis was significantly (p < 0.05) more abundant than any of the other species collected in the study area. Infection indices were greater than 50% for each of the four collected triatomine species. Significantly more triatomines were collected from intradomiciliary areas than from peridomiciliary or sylvatic areas. Infestation, crowding and density indices were low, whereas colonisation indices were high in five localities. The current vectorial conditions in the study area require continuous entomological and serological surveillance to diminish the risk of T. cruzi transmission to human populations
    corecore