142 research outputs found

    On the history of ecto-ATPases: The role of W. A. Engelhardt

    Get PDF

    Myokines as a promising marker of metabolic disorders and physical activity

    Get PDF
    Currently, about 82 myokines identified and their number is increasing. It is shown that the major regulator of myokine expression and production is exercise. The expression level of IL-6 is dependent on the amount of muscle mass involved in contraction. It is assumed that the decrease in the partial pressure of oxygen, the increase in [Ca2+]i ratio and AMP/ATP (exercise response) are major regulator of transcriptome and proteome changes in the skeletal muscle cells, including a myokine set

    Vascular Smooth Muscle as an Oxygen Sensor: Role of Elevation of the [Na+]i/[K+]i

    Get PDF
    The article presents a review of data from our own research and data obtained by other authors about the role of intracellular sodium (Nai+) and potassium (Ki+) in transcriptomic changes in vascular smooth muscle cells (VSMC) during hypoxia. It was found that acute hypoxia suppressed [K+]o and phenylephrine-induced contractions of aortic rings through voltage-gated as well as by Cai2+- and ATP-sensitive K+ channels; 24-h incubation of VSMC in ischemic conditions resulted in attenuation of ATP content, elevation of [Na+]i and loss of [K+]i. Dissipation of Na+ and K+ gradients in low-Na+, high-K+ medium completely eliminated increment in Fos, Atf3, Ptgs2 and Per2 mRNAs and sharply diminished augmentation of Klf10, Edn1, Nr4a1 and Hes1 expression evoked by hypoxia. All these data suggest that Nai+/Ki+-mediated signaling contribute to transcriptomic changes in VSMC subjected to sustained hypoxia

    Dynamic and Static Exercises Differentially Affect Plasma Cytokine Content in Elite Endurance- and Strength-Trained Athletes and Untrained Volunteers

    Get PDF
    Extensive exercise increases the plasma content of IL-6, IL-8, IL-15, leukemia inhibitory factor (LIF), and several other cytokines via their augmented transcription in skeletal muscle cells. However, the relative impact of aerobic and resistant training interventions on cytokine production remains poorly defined. In this study, we compared effects of dynamic and static load on cytokine plasma content in elite strength- and endurance-trained athletes vs. healthy untrained volunteers. The plasma cytokine content was measured before, immediately after, and 30 min post-exercise using enzyme-linked immunosorbent assay. Pedaling on a bicycle ergometer increased IL-6 and IL-8 content in the plasma of trained athletes by about 4- and 2-fold, respectively. In contrast to dynamic load, weightlifting had negligible impact on these parameters in strength exercise-trained athletes. Unlike IL-6 and IL-8, dynamic exercise had no impact on IL-15 and LIF, whereas static load increases the content of these cytokines by ~50%. Two-fold increment of IL-8 content seen in athletes subjected to dynamic exercise was absent in untrained individuals, whereas the ~50% increase in IL-15 triggered by static load in the plasma of weightlifting athletes was not registered in the control group. Thus, our results show the distinct impact of static and dynamic exercises on cytokine content in the plasma of trained athletes. They also demonstrate that both types of exercises differentially affect cytokine content in plasma of athletes and untrained persons

    Erythrocytes as regulators of blood vessel tone

    Get PDF
    A drop in oxygen partial pressure results in elevation of blood vessel diameter. It has been demonstrated that isolated vessels exhibit this unique feature only when they are perfused in the presence of erythrocytes. More recently, it was shown that haemoglobin plays a key role in oxygen sensing. Its deoxygenated form interacts with band 3 protein, triggering the cascade of non-identified intracellular signals involved in nitric oxide production and release of ATP interacting with P2Y purinergic receptors in endothelial cells. In this review, we summarize the data on mechanisms of ATP release from erythrocytes, as well as on its physiological and pathophysiological implications

    Changes in the plasma levels of myokines after different physical exercises in athletes and untrained individuals

    Get PDF
    The influence of dynamic and static load on the plasma level of myokines in strength-and endurance-trained athletes and untrained subjects has been studied. The range of myokines has been found to depend on the type of loads and the level of fitness. Dynamic and static exercises have different effects on the level of myokines in athletes and untrained subjects. The dynamic load increases the level of IL-6 and IL-8 in the plasma of athletes, while the static load increases the concentration of IL-15 and LIF. At the same time, no increase in the level of IL-8 after cyclic loading or in IL-15 after a static load has been observed in the control group. These differences may be based on a number of mechanisms. The cellular composition of skeletal muscles and the phenotypic features of muscle fibers, changing as a result of regular exercise, can modify the processes of myokine production. However, the processes of transcription in muscle fibers are much more important; the most important ones are HIF-1α, [Ca2+]i and [Na+]i/[K+]i-dependent intracellular signaling pathways. The modification of these mechanisms caused by different physical loads and intensity is of great interest since it is a promising way to influence the metabolic processes at the cellular and systemic levels, which is very helpful in both improving athletic performance and correcting metabolic disorders in a number of socially significant diseases

    Activation of cAMP signaling transiently inhibits apoptosis in vascular smooth muscle cells in a site upstream of caspase-3

    Get PDF
    Intracellular signaling pathways that are involved in protection of vascular smooth muscle cells (VSMC) from apoptosis remain poorly understood. This study examines the effect of activators of cAMP/cGMP signaling on apoptosis in non-transfected VSMC and in VSMC transfected with c-myc (VSMC-MYC) or with its functional analogue, E1A-adenoviral protein (VSMC-E1A). Serum-deprived VSMC-E1A exhibited the highest apoptosis measured as the content of chromatin and low molecular weight DNA fragments, phosphatidylserine content in the outer surface of plasma membrane and caspase-3 activity (ten-, five-, four- and tenfold increase after 6 h of serum withdrawal, respectively). In VSMC-E1A, the addition of an activator of adenylate cyclase, forskolin, abolished chromatin cleavage, DNA laddering, caspase-3 activation and the appearance of morphologically-defined apoptotic cells triggered by 6 h of serum deprivation. In non-transfected VSMC and in VSMC-MYC, 6 h serum deprivation led to approximately six- and threefold activation of chromatin cleavage, respectively, that was also blocked by forskolin. In VSMC-E1A, inhibition of apoptosis was observed with other activators of cAMP signaling (cholera toxin, isoproterenol, adenosine, 8-Br-cAMP), whereas 6 h incubation with modulators of cGMP signaling (8-Br-cGMP, nitroprusside, atrial natriuretic peptide, L-NAME) did not affect the development of apoptotic machinery. The antiapoptotic effect of forskolin was abolished in 24 h of serum deprivation that was accompanied by normalization of intracellular cAMP content and protein kinase A (PKA) activity. Protection of VSMC-E1A from apoptosis by forskolin was blunted by PKA inhibitors (H-89 and KT5720), whereas transfection of cells with PKA catalytic subunit attenuated apoptosis triggered by serum withdrawal. The protection of VSMC-E1A by forskolin from apoptosis was insensitive to modulators of cytoskeleton assembly (cytochalasin B, colchicine). Neither acute (30 min) nor chronic (24 h) exposure of VSMC to forskolin modified basal and serum-induced phosphorylation of the MAP kinase ERK1/2. Thus, our results show that activation of cAMP signaling delays the development of apoptosis in serum-deprived VSMC at a site upstream of caspase-3 via activation of PKA and independently of cAMP-induced reorganization of the cytoskeleton network and the ERK1/2-terminated MAPK signaling cascade

    Transcriptomic changes triggered by ouabain in rat cerebellum granule cells: Role of α3- and α1-Na+,K+-ATPase-mediated signaling

    Get PDF
    It was shown previously that inhibition of the ubiquitous α1 isoform of Na+,K+-ATPase by ouabain sharply affects gene expression profile via elevation of intracellular [Na+]i/[K+]i ratio. Unlike other cells, neurons are abundant in the α3 isoform of Na+,K+-ATPase, whose affinity in rodents to ouabain is 104-fold higher compared to the α1 isoform. With these sharp differences in mind, we compared transcriptomic changes in rat cerebellum granule cells triggered by inhibition of α1- and α3-Na+,K+-ATPase isoforms. Inhibition of α1- and α3-Na+,K+-ATPase isoforms by 1 mM ouabain resulted in dissipation of transmembrane Na+ and K+ gradients and differential expression of 994 transcripts, whereas selective inhibition of α3-Na+,K+-ATPase isoform by 100 nM ouabain affected expression of 144 transcripts without any impact on the [Na+]i/[K+]i ratio. The list of genes whose expression was affected by 1 mM ouabain by more than 2-fold was abundant in intermediates of intracellular signaling and transcription regulators, including augmented content of Npas4, Fos, Junb, Atf3, and Klf4 mRNAs, whose upregulated expression was demonstrated in neurons subjected to electrical and glutamatergic stimulation. The role [Na+]i/[K+]i-mediated signaling in transcriptomic changes involved in memory formation and storage should be examined further

    Time- and dose dependent actions of cardiotonic steroids on transcriptome and intracellular content of Na+ and K+: a comparative analysis

    Get PDF
    Recent studies demonstrated that in addition to Na+,K+-ATPase inhibition cardiotonic steroids (CTSs) affect diverse intracellular signaling pathways. This study examines the relative impact of [Na+]i/[K+]i-mediated and -independent signaling in transcriptomic changes triggered by the endogenous CTSs ouabain and marinobufagenin (MBG) in human umbilical vein endothelial cells (HUVEC). We noted that prolongation of incubation increased the apparent affinity for ouabain estimated by the loss of [K+]i and gain of [Na+]i. Six hour exposure of HUVEC to 100 and 3,000 nM ouabain resulted in elevation of the [Na+]i/[K+]i ratio by ~15 and 80-fold and differential expression of 258 and 2185 transcripts, respectively. Neither [Na+]i/[K+]i ratio nor transcriptome were affected by 6-h incubation with 30 nM ouabain. The 96-h incubation with 3 nM ouabain or 30 nM MBG elevated the [Na+]i/[K+]i ratio by ~14 and 3-fold and led to differential expression of 880 and 484 transcripts, respectively. These parameters were not changed after 96-h incubation with 1 nM ouabain or 10 nM MBG. Thus, our results demonstrate that elevation of the [Na+]i/[K+]i ratio is an obligatory step for transcriptomic changes evoked by CTS in HUVEC. The molecular origin of upstream [Na+]i/[K+]i sensors involved in transcription regulation should be identified in forthcoming studies

    Hemolysis and ATP release from human and rat erythrocytes under conditions of hypoxia: a comparative study

    Get PDF
    Red blood cells are involved not only in transportation of oxygen and carbon dioxide but also in autoregulation of vascular tone by ATP release in hypoxic conditions. Molecular mechanisms of the ATP release from red blood cells in response to a decrease in partial oxygen pressure still remain to be elucidated. In this work we have studied effects of hypoxia on red blood cell hemolysis in humans and rats and compared the effects of inhibitors of ecto-ATPase and pannexin on the release of ATP and hemoglobin from rat erythrocytes. The 20-min hypoxia at 37°C increased hemolysis of red blood cells in humans and rats 1.5- and 2.5-fold, respectively. In rat erythrocytes a significant increase in hypoxia-induced extracellular ATP level was found only in the presence of ecto-ATPase inhibitor ARL 67156. In these conditions we observed a positive correlation (R2 = 0.5003) between the increase in free hemoglobin concentration and the ATP release. Neither carbenoxolon nor probenecid, the inhibitors of low-selectivity pannexin channels, altered the hypoxia-induced ATP release from rat erythrocytes. The obtained results indicate a key role of hemolysis in the ATP release from red blood cells
    corecore