507 research outputs found

    Thermal corpuscular black holes

    Full text link
    We study the corpuscular model of an evaporating black hole consisting of a specific quantum state for a large number NN of self-confined bosons. The single-particle spectrum contains a discrete ground state of energy mm (corresponding to toy gravitons forming the black hole), and a gapless continuous spectrum (to accommodate for the Hawking radiation with energy ω>m\omega>m). Each constituent is in a superposition of the ground state and a Planckian distribution at the expected Hawking temperature in the continuum. We first find that, assuming the Hawking radiation is the leading effect of the internal scatterings, the corresponding NN-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy M=N mM=N\,m and a Planckian distribution for E>ME>M at the same Hawking temperature. From this collective state, we compute the partition function and obtain an entropy which reproduces the usual area law with a logarithmic correction precisely related with the Hawking component. By means of the horizon wave-function for the system, we finally show the backreaction of modes with ω>m\omega>m reduces the Hawking flux. Both corrections, to the entropy and to the Hawking flux, suggest the evaporation properly stops for vanishing mass, if the black hole is in this particular quantum state.Comment: PDFLaTeX, 15 pages, 2 figure. Version to appear in PR

    Black holes as self-sustained quantum states, and Hawking radiation

    Full text link
    We employ the recently proposed formalism of the "horizon wave-function" to investigate the emergence of a horizon in models of black holes as Bose-Einstein condensates of gravitons. We start from the Klein-Gordon equation for a massless scalar (toy graviton) field coupled to a static matter current. The (spherically symmetric) classical field reproduces the Newtonian potential generated by the matter source, and the corresponding quantum state is given by a coherent superposition of scalar modes with continuous occupation number. Assuming an attractive self-interaction that allows for bound states, one finds that (approximately) only one mode is allowed, and the system can be confined in a region of the size of the Schwarzschild radius. This radius is then shown to correspond to a proper horizon, by means of the horizon wave-function of the quantum system, with an uncertainty in size naturally related to the expected typical energy of Hawking modes. In particular, this uncertainty decreases for larger black hole mass (with larger number of light scalar quanta), in agreement with semiclassical expectations, a result which does not hold for a single very massive particle. We finally speculate that a phase transition should occur during the gravitational collapse of a star, ideally represented by a static matter current and Newtonian potential, that leads to a black hole, again ideally represented by the condensate of toy gravitons, and suggest an effective order parameter that could be used to investigate this transition.Comment: 25 pages, 6 figures. Improved text and typos fixed. Final version to appear in PR

    Thermal BEC black holes

    Get PDF
    We review some features of BEC models of black holes obtained by means of the HWF formalism. We consider the KG equation for a toy graviton field coupled to a static matter current in spherical symmetry. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with continuous occupation number. An attractive self-interaction is needed for bound states to form, so that (approximately) one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The HWF is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons), in agreement with semiclassical calculations and different from a single very massive particle. The spectrum contains a discrete ground state of energy mm (the bosons forming the black hole), and a continuous spectrum with energy ω>m\omega > m (representing the Hawking radiation and modelled with a Planckian distribution at the expected Hawking temperature). The NN-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy M=NmM = N m and a Planckian distribution for E>ME > M at the same Hawking temperature. The partition function is then found to yield the usual area law for the entropy, with a logarithmic correction related with the Hawking component. The backreaction of modes with ω>m\omega > m is also shown to reduce the Hawking flux and the evaporation properly stops for vanishing mass.Comment: 30 pages, pdflatex with 6 figures. Review paper prepared for Entropy special issue "Entropy in Quantum Gravity and Quantum Cosmology

    The gingival Stillman's clefts: histopathology and cellular characteristics

    Get PDF
    Stillman's cleft is a mucogingival triangular-shaped defect on the buccal surface of a root with unknown etiology and pathogenesis. The aim of this study is to examine the Stillman's cleft obtained from excision during root coverage surgical procedures at an histopathological level

    Meteorological Navigation by Integrating Metocean Forecast Data and Ship Performance Models into an ECDIS-like e-Navigation Prototype Interface

    Get PDF
    In the complex processes of route planning, voyage monitoring, and post-voyage analysis, a key element is the capability of merging metocean forecast data with the available knowledge of ship responses in the encountered environmental conditions. In this context, a prototype system has been implemented capable of integrating metocean models forecasts with ship specific performance data and models. The work is based on the exploitation of an open source ECDIS-like system originally developed in the e-Navigation framework. The resulting prototype system allows the uploading and visualization of metocean data, the consequent computation of fuel consumption along each analyzed route, and the evaluation of the encountered meteo-marine conditions on each route way point. This allows us to "effectively and deeply dig inside" the various layers of available metocean forecast data regarding atmospheric and marine conditions and evaluating their effects on ship performance indicators. The system could also be used to trigger route optimization algorithms and subsequently evaluate the results. All these functionalities are tailored in order to facilitate the "what-if" analysis in the route selection process performed by deck officers. Many of the added functionalities can be utilized also in a shore-based fleet monitoring and management center. A description is given of the modeling and visualization approaches that have been implemented. Their potentialities are illustrated through the discussion of some examples in Mediterranean navigation

    Timing is everything: Dance aesthetics depend on the complexity of movement kinematics

    Get PDF
    What constitutes a beautiful action? Research into dance aesthetics has largely focussed on subjective features like familiarity with the observed movement, but has rarely studied objective features like speed or acceleration. We manipulated the kinematic complexity of observed actions by creating dance sequences that varied in movement timing, but not in movement trajectory. Dance-naïve participants rated the dance videos on speed, effort, reproducibility, and enjoyment. Using linear mixed-effects modeling, we show that faster, more predictable movement sequences with varied velocity profiles are judged to be more effortful, less reproducible, and more aesthetically pleasing than slower sequences with more uniform velocity profiles. Accordingly, dance aesthetics depend not only on which movements are being performed but on how movements are executed and linked into sequences. The aesthetics of movement timing may apply across culturally-specific dance styles and predict both preference for and perceived difficulty of dance, consistent with information theory and effort heuristic accounts of aesthetic appreciation

    Structural analysis of the double-walled copper-steel cryogenic chamber of the ASTAROTH experiment

    Get PDF
    This document describes the verification process of structural performance of the double- walled copper-steel cryogenic chamber of the ASTAROTH (All Sensitive crysTal ARray with lOw THreshold) experiment and the evaluation of the stresses generated near the thermal bridge connecting the inner and outer wall. The chamber consists of an external AISI 316L stainless steel dewar and an inner double-walled OF (Oxygen Free) copper dewar connected to an AISI 316L stainless steel flanged collar. The results showed that close to the thermal bridge (copper-steel junction) the stresses slightly exceed the YS of copper at the estimated operating temperature (localised strain-hardening condition). On the other hand, the safety coefficient respect to fracture is well above one for both materials. This condition, together with the fact that limited cooling cycles are expected during the operating life of the system, leads to the assumption that a progressive material hardening will occur in this area, thus locally raising the YS limit

    Metal free graphene oxide (GO) nanosheets and pristine-single wall carbon nanotubes (p-SWCNTs) biocompatibility investigation: a comparative study in different human cell lines

    Get PDF
    The in vitro biocompatibility of Graphene Oxide (GO) nanosheets, which were obtained by the electrochemical exfoliation of graphite electrodes in an electrolytic bath containing salts, was compared with the pristine Single Wall Carbon Nanotubes (p-SWCNTs) under the same experimental conditions in different human cell lines. The cells were treated with different concentrations of GO and SWCNTs for up to 48 h. GO did not induce any significant morphological or functional modifications (demonstrating a high biocompatibility), while SWNCTs were toxic at any concentration used after a few hours of treatment. The cell viability or cytotoxicity were detected by the trypan blue assay and the lactate dehydrogenase LDH quantitative enzymatic test. The Confocal Laser Scanning Microscopy (CLSM) and transmission electron microscopy (TEM) analysis demonstrated the uptake and internalization of GO sheets into cells, which was localized mainly in the cytoplasm. Different results were observed in the same cell lines treated with p-SWCNTs. TEM and CLSM (Confocal Laser Scanning Microscopy) showed that the p-SWCNTs induced vacuolization in the cytoplasm, disruption of cellular architecture and damage to the nuclei. The most important result of this study is our finding of a higher GO biocompatibility compared to the p-SWCNTs in the same cell lines. This means that GO nanosheets, which are obtained by the electrochemical exfoliation of a graphite-based electrode (carried out in saline solutions or other physiological working media) could represent an eligible nanocarrier for drug delivery, gene transfection and molecular cell imaging tests
    • …
    corecore