89 research outputs found

    Silver nanoparticles induce pro-inflammatory gene expression and inflammasome activation in human monocytes

    Get PDF
    A complete cytotoxic profile of exposure to silver (AgNP) nanoparticles investigating their biological effects on the innate immune response of circulating white blood cells is required to form a complete understanding of the risk posed. This was explored by measuring AgNP-stimulated gene expression of the pro-inflammatory cytokines interleukin-1 (IL-1), interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) in THP-1 monocytes. A further study, on human monocytes extracted from a cohort of blood samples, was carried out to compare with the AgNP immune response in THP-1 cells along with the detection of pro-IL-1β which is a key mediator of the inflammasome complex. The aims of the study were to clearly demonstrate that AgNP can significantly up-regulate pro-inflammatory cytokine gene expression of IL-1, IL-6 and TNF-α in both THP-1 cells and primary blood monocytes thus indicating a rapid response to AgNP in circulation. Furthermore, a role for the inflammasome in AgNP response was indicated by pro-IL-1β cleavage and release. These results highlight the potential inflammatory effects of AgNP exposure and the responses evoked should be considered with respect to the potential harm that exposure may cause

    High level of treatment failure with commonly used anthelmintics on Irish sheep farms

    Get PDF
    peer-reviewedBackground: In 2013 a Technology Adoption Program for sheep farmers was established to encourage the implementation of best management practices on sheep farms in Ireland. There were 4,500 participants in this programme in 2013. As part of this programme, farmers had the option to carry out a drench test to establish the efficacy of their anthelmintic treatment. Results: Flock faecal samples were collected before and after treatment administration and gastrointestinal nematode eggs enumerated. In total there were 1,893 participants in the task, however only 1,585 included both a pre- and post-treatment faecal sample. Of those, 1,308 provided information on the anthelmintic product that they used with 46%, 23% and 28% using a benzimidazole (BZ), levamisole (LEV) and macrocyclic lactone (ML) product respectively. The remaining farmers used a product inapplicable for inclusion in the task such as a flukicide or BZ/LEV combination product. Samples were included for analysis of drench efficacy if the pre-treatment flock egg count was ≥200 eggs per gram and the interval post-sampling was 10–14 days for BZ products, 4–7 days for LEV products and 14–18 days for ML products. These criteria reduced the number of valid tests to 369, 19.5% of all tests conducted. If the reduction post-treatment was ≥95% the treatment was considered effective. Only 51% of treatments were considered effective using this criterion. There was a significant difference in efficacy between the anthelmintic drug classes with BZ effective in only 30% of treatments, LEV effective in 52% of cases and ML effective in 76% of cases. Conclusions: Gastrointestinal nematode anthelmintic treatments, as practiced on Irish farms, have a high failure rate. There was a significant difference between the efficacies of the anthelmintic classes with BZ the least effective and ML the most effective

    In Vitro Evaluation of the Cytotoxicity of a Folate-modified β-cyclodextrin as a New Anti-cancer Drug Delivery System

    Get PDF
    Many chemotherapeutic drugs are therapeutically non-selective and do not distinguish between healthy cells and tumour cells which can result in severe side effects and toxicity. Drug delivery systems can be used to target specific cells and therefore may eliminate many of the side effects, increasing drug efficiency and efficacy, and controlling drug release. One possible strategy for targeted drug delivery is to use unique molecular markers such as folate receptors in cancer cells. In this work the cytotoxicity of a novel cyclodextrin-folate conjugate, 6-deoxy-6-[(1-(-2amino)ethylamino)folate-β-cyclodextrin (CDEnFA) was studied using the MTT assay and the MCF-7 (Breast), HeLa (Cervical), A549 (Lung cancer) and BEAS-2B (normal Lung) cell lines. The MTT assay showed that the drug delivery vehicle CDEnFA is not cytotoxic towards the cell lines studied even towards the normal BEAS-2B cell line and therefore it is expected that it is safe for medical use. The inclusion complex CDEnFA:MTX has superior cytotoxic activity towards all of the cancer cell lines studied compared to the drug MTX alone and CDEnFA:MTX is four times less cytotoxic than the drug towards the normal cell line. The observed toxicity is attributed solely to MTX since CDEnFA did not exhibit significant cytotoxicity. These results also suggest that the drug remains bioactive even after inclusion in the CD cavity. The cytotoxicity trend observed for CDEnFA:MTX in this study is MCF-7 (Breast) \u3e A549 (Lung) \u3e HeLa (Cervical) \u3e BEAS-2B (normal Lung)

    Non-thermal Atmospheric Plasma Induces ROS-independent Cell Death in U373MG Glioma Cells and Augments the Cytotoxicity of Temozolomide

    Get PDF
    Non-thermal atmospheric plasma (NTAP) is an ionised gas produced under high voltage that can generate short-lived chemically active species and induce a cytotoxic insult in cancer cells. Cell-specific resistance to NTAP-mediated cytotoxicity has been reported in the literature. The aim of this study was to determine whether resistance against NTAP could be overcome using the human glioma cell line U373MG. Methods: Non-thermal atmospheric plasma was generated using a Dielectric Barrier Device (DBD) system with a maximum voltage output of 120 kV at 50 Hz. The viability of U373MG GBM cells and HeLa cervical carcinoma cells was determined using morphology, flow cytometry and cytotoxicity assays. Fluorescent probes and inhibitors were used to determine the mechanisms of cytotoxicity of cells exposed to the plasma field. Combinational therapy with temozolomide (TMZ) and multi-dose treatments were explored as mechanisms to overcome resistance to NTAP. Results: Non-thermal atmospheric plasma decreased cell viability in a dose (time)-dependent manner. U373MG cells were shown to be resistant to NTAP treatment when compared with HeLa cells, and the levels of intracellular reactive oxygen species (ROS) quantified in U373MG cells were much lower than in HeLa cells following exposure to the plasma field. Reactive oxygen species inhibitor N-acetyl cysteine (NAC) only alleviated the cytotoxic effects in HeLa cells and not in the relatively NTAP-resistant cell line U373MG. Longer exposures to NTAP induced a cell death independent of ROS, JNK and caspases in U373MG. The relative resistance of U373MG cells to NTAP could be overcome when used in combination with low concentrations of the GBM chemotherapy TMZ or exposure to multiple doses. Conclusions: For the very first time, we report that NTAP induces an ROS-, JNK- and caspase-independent mechanism of cell death in the U373MG GBM cell line that can be greatly enhanced when used in combination with low doses of TMZ. Further refinement of the technology may facilitate localised activation of cytotoxicity against GBM when used in combination with new and existing chemotherapeutic regimens

    Non-thermal Atmospheric Plasma Induces ROS-independent Cell Death in U373MG Glioma Cells and Augments the Cytotoxicity of Temozolomide

    Get PDF
    Non-thermal atmospheric plasma (NTAP) is an ionised gas produced under high voltage that can generate short-lived chemically active species and induce a cytotoxic insult in cancer cells. Cell-specific resistance to NTAP-mediated cytotoxicity has been reported in the literature. The aim of this study was to determine whether resistance against NTAP could be overcome using the human glioma cell line U373MG. Methods: Non-thermal atmospheric plasma was generated using a Dielectric Barrier Device (DBD) system with a maximum voltage output of 120 kV at 50 Hz. The viability of U373MG GBM cells and HeLa cervical carcinoma cells was determined using morphology, flow cytometry and cytotoxicity assays. Fluorescent probes and inhibitors were used to determine the mechanisms of cytotoxicity of cells exposed to the plasma field. Combinational therapy with temozolomide (TMZ) and multi-dose treatments were explored as mechanisms to overcome resistance to NTAP. Results: Non-thermal atmospheric plasma decreased cell viability in a dose (time)-dependent manner. U373MG cells were shown to be resistant to NTAP treatment when compared with HeLa cells, and the levels of intracellular reactive oxygen species (ROS) quantified in U373MG cells were much lower than in HeLa cells following exposure to the plasma field. Reactive oxygen species inhibitor N-acetyl cysteine (NAC) only alleviated the cytotoxic effects in HeLa cells and not in the relatively NTAP-resistant cell line U373MG. Longer exposures to NTAP induced a cell death independent of ROS, JNK and caspases in U373MG. The relative resistance of U373MG cells to NTAP could be overcome when used in combination with low concentrations of the GBM chemotherapy TMZ or exposure to multiple doses. Conclusions: For the very first time, we report that NTAP induces an ROS-, JNK- and caspase-independent mechanism of cell death in the U373MG GBM cell line that can be greatly enhanced when used in combination with low doses of TMZ. Further refinement of the technology may facilitate localised activation of cytotoxicity against GBM when used in combination with new and existing chemotherapeutic regimens

    Analysis of gene expression in the bovine corpus luteum through generation and characterisation of 960 ESTs

    Get PDF
    To gain new insights into gene identity and gene expression in the bovine corpus luteum (CL) a directionally cloned CL cDNA library was constructed, screened with a total CL cDNA probe and clones representing abundant and rare mRNA transcripts isolated. The 5Vterminal DNA sequence of 960 cDNA clones, composed of 192 abundant and 768 rare mRNA transcripts was determined and clustered into 351 non-redundant expressed sequence tag (EST) groups. Bioinformatic analysis revealed that 309 (88%) of the ESTs showed significant homology to existing sequences in the protein and nucleotide public databases. Several previously unidentified bovine genes encoding proteins associated with key aspects of CL function including extracellular matrix remodelling, lipid metabolism/steroid biosynthesis and apoptosis, were identified. Forty-two (12%) of the ESTs showed homology with human or with other uncharacterised ESTs, some of these were abundantly expressed and may therefore play an important role in primary CL function. Tissue-specificity and temporal CL gene expression of selected clones previously unidentified in bovine CL tissue was also examined. The most interesting finds indicated that mRNA encoding squalene epoxidase was constitutively expressed in CL tissue throughout the oestrous cycle and 7-fold down-regulated ( P < 0.05)in late luteal tissue, concomitant with the disappearance of systemic progesterone, suggesting that de novo cholesterol biosynthesis plays an important role in steroidogenesis. The mRNA encoding the growth factor, insulin-like growth factor-binding protein-related protein 1 (IGFBP-rP1), remained constant during the oestrous cycle and was 1.8-fold up-regulated ( P < 0.05) in late luteal tissue implying a role in CL regression

    Water-soluble bis(1,10-phenanthroline) Octanedioate Cu2+ and Mn2+ Complexes with Unprecedented Nano and Picomolar in Vitro Cytotoxicity: Promising Leads for Chemotherapeutic Drug Development

    Get PDF
    Dinuclear CuII and MnII bis-phenanthroline octanedioate complexes exhibit rapid, unprecedented nano and picomolar in vitro cytotoxicity against colorectal cancer lines and are less toxic than cisplatin when examined in vivo. The complexes are potent generators of cellular reactive oxygen species, avid DNA binders and induce O2 dependent cleavage of DNA. The Cu(II) complex was found to have self-cleaving nuclease activity

    Cold Atmospheric Plasma Induces Accumulation of Lysosomes and Caspase-independent Cell Death in U373MG Glioblastoma Multiforme Cells

    Get PDF
    Room temperature Cold Atmospheric Plasma (CAP) has shown promising efficacy for the treatment of cancer but the exact mechanisms of action remain unclear. Both apoptosis and necrosis have been implicated as the mode of cell death in various cancer cells. We have previously demonstrated a caspase-independent mechanism of cell death in p53-mutated glioblastoma multiforme (GBM) cells exposed to plasma. The purpose of this study was to elucidate the molecular mechanisms involved in caspase-independent cell death induced by plasma treatment. We demonstrate that plasma induces rapid cell death in GBM cells, independent of caspases. Accumulation of vesicles was observed in plasma treated cells that stained positive with acridine orange. Western immunoblotting confirmed that autophagy is not activated following plasma treatment. Acridine orange intensity correlates closely with the lysosomal marker Lyso TrackerTM Deep Red. Further investigation using isosurface visualisation of confocal imaging confirmed that lysosomal accumulation occurs in plasma treated cells. The accumulation of lysosomes was associated with concomitant cell death following plasma treatment. In conclusion, we observed rapid accumulation of acidic vesicles and cell death following CAP treatment in GBM cells. We found no evidence that either apoptosis or autophagy, however, determined that a rapid accumulation of late stage endosomes/lysosomes precedes membrane permeabilisation, mitochondrial membrane depolarisation and caspase independent cell death

    Cold Atmospheric Plasma induces accumulation of lysosomes and caspase-independent cell death in U373MG glioblastoma multiforme cells

    Get PDF
    Room temperature Cold Atmospheric Plasma (CAP) has shown promising efficacy for the treatment of cancer but the exact mechanisms of action remain unclear. Both apoptosis and necrosis have been implicated as the mode of cell death in various cancer cells. We have previously demonstrated a caspase-independent mechanism of cell death in p53-mutated glioblastoma multiforme (GBM) cells exposed to plasma. The purpose of this study was to elucidate the molecular mechanisms involved in caspase-independent cell death induced by plasma treatment. We demonstrate that plasma induces rapid cell death in GBM cells, independent of caspases. Accumulation of vesicles was observed in plasma treated cells that stained positive with acridine orange. Western immunoblotting confirmed that autophagy is not activated following plasma treatment. Acridine orange intensity correlates closely with the lysosomal marker Lyso TrackerTM Deep Red. Further investigation using isosurface visualisation of confocal imaging confirmed that lysosomal accumulation occurs in plasma treated cells. The accumulation of lysosomes was associated with concomitant cell death following plasma treatment. In conclusion, we observed rapid accumulation of acidic vesicles and cell death following CAP treatment in GBM cells. We found no evidence that either apoptosis or autophagy, however, determined that a rapid accumulation of late stage endosomes/lysosomes precedes membrane permeabilisation, mitochondrial membrane depolarisation and caspase independent cell death
    corecore