

Technological University Dublin ARROW@TU Dublin

Articles

NanoLab

2011-01-01

Water-soluble bis(1,10-phenanthroline) Octanedioate Cu2+ and Mn2+ Complexes with Unprecedented Nano and Picomolar in Vitro Cytotoxicity: Promising Leads for Chemotherapeutic Drug Development

Andrew Kellett Technological University Dublin

Mark O'Connor Technological University Dublin

Malachy McCann National University of Ireland, Maynooth

Follow this and additional works at: https://arrow.tudublin.ie/nanolart

Coppologinal University Dublin orla.howe@tudublin.ie

Alan Casey Technological University Dublin, alan.casey@tudublin.ie Recommended Citation

Kellett, A., O'Connor, M., McCann, M., Howe, O., Casey, A., McCarron, P., Kavanagh, K., McNamara, M., Kennedy, S., May, D., Skell, P., O'Shea, D., Devereux, M.: Water-soluble bis(1,10-phenanthroline) See next page for additional authors octanedioate Cu2+ and Mn2+ complexes with unprecedented nano and picomolar in vitro cytotoxicity: promising leads for chemotherapeutic drug development Medicinal Chemistry Communications, 2, pp.579-584. 2011. doi:10.1039/c0md00266f

This Article is brought to you for free and open access by the NanoLab at ARROW@TU Dublin. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU Dublin. For more information, please contact yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie, brian.widdis@tudublin.ie.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License

Authors

Andrew Kellett, Mark O'Connor, Malachy McCann, Orla Howe, Alan Casey, Pauric McCarron, Kevin Kavanagh, Mary McNamara, Sean Kennedy, Donald May, Philip Skell, Denis O'Shea, and Michael Devereux

ARTICLE TYPE

Water-soluble Cu^{II} and Mn^{II} bis-phenanthroline octanedioate complexes with unprecedented nano and picomolar in vitro cytotoxicity as promising leads for chemotherapeutic drug development

s Andrew Kellett,*^a Mark O'Connor,^a Malachy McCann,^b Orla Howe,^a Alan Casey,^a Pauraic McCarron,^{a,b} Mary McNamara,^a Sean Kennedy,^a Donald D. May,^c Philip Skell,^d Denis O'Shea^a and Michael Devereux^{a*}

Received (in XXX, XXX) Xth XXXXXXXX 200X, Accepted Xth XXXXXXXX 200X First published on the web Xth XXXXXXXX 200X DOI: 10.1039/b000000x

- ¹⁰ Dinuclear Cu^{II} and Mn^{II} bis-phenanthroline octanedioate complexes exhibit rapid, unprecedented nano and picomolar in vitro cytotoxicity against colorectal cancer lines and are less toxic than cisplatin when examined in vivo. The complexes are potent generators of cellular reactive oxygen species, avid DNA binders and induce O2 dependent
- 15 cleavage of DNA. The Cu(II) complex was found to have selfcleaving nuclease activity.

Introduction

The development of self-cleaving chemical nucleases is regarded as the paradigm of redox-active metal-based chemotherapeutics.

- 20 DNA targeted agents capable of inducing single stranded or double stranded scission have found clinical application within cancer chemotherapy.¹ Other applications within this class include; probing of DNA-specific structures, mapping of protein and DNA interactions, gene regulation and signal transduction.^{2, 3}
- 25 Thus, explorations toward the discovery and development of natural or synthetic chemical nucleases are major topics of interest. Redox active transition-metal-based chemical nucleases are particularly important due to their catalytic potential to support the one-electron oxidation/reduction reactions necessary
- 30 to drive activation of C-H deoxyribose bonds.

In the presence of Cu^{2+} , the oxidative formation of π radical cations within marine-based products tambjamine E,⁴ prodigiosin⁵ and pyrimol,⁶ have recently been shown to mediate 35 self-cleaving DNA damage, i.e. scission which does not require the presence of added oxidant or reductant. These Cu²⁺ compounds have also demonstrated significant in vitro chemotherapeutic potential against leukaemia and ovarian cancer cells, some of which had cisplatin resistance.^{5, 6}

40

The discovery of the first synthetic chemical nuclease, $[Cu(phen)_2]^{2+}$ (phen = 1,10-phenanthroline, *Figure 1*), has sparked intensive effort toward the development of new bis-phen agents capable of enhanced DNA cleaving compared to the parent ⁴⁵ complex.⁷ The DNA cleaving limitations of [Cu(phen)₂]²⁺ include (i) a high dissociation constant of the second coordinated phenanthroline ligand⁸ and (ii) the need for exogenous reductant to generate the active species $[Cu(phen)_2]^+$. The dissociation problem (i) was solved by Meunier, Pitie et al through the advent 50 of clip-phen, whereby two phenanthroline ligands are connected

at the 2' or 3' position by a serinol bridge.⁹⁻¹¹ Recently this laboratory has reported the first self-cleaving bis-phen system, [Cu(phen)₂(phthalate)] (phthalate = o-, m-, p-phthalate, *Figure* 1), capable of inducing single-stranded DNA scission in the

55 absence of exogenous reductant or oxidant.¹²

While [Cu(phen)₂(phthalate)] complexes displayed excellent chemotherapeutic potential against, colon (HT29), breast (MC-F7) and prostate (DU145) cancer lines, their water 60 solubility is poor. Of the phthalate group, the cationic, dinuclear species $[Cu_2(phen)_4(\mu_2-p-phthalate)]^{2+}$ was the most active DNAbinding, self-cleaving and chemotherapeutic agent. To that end, in the current study, we have investigated the application of water soluble Cu²⁺ and Mn²⁺ dinuclear, cationic, bis-phen octanedioate 65 (oda) (Figure 1) systems as nuclease mimetics and their ability to induce cancer cell death through the redox-generation of reactive oxygen species (ROS). The possible formation of a π carboxyl

radical within the Cu²⁺ system, which cleaves DNA by self-

Figure 1. Molecular strucutres of phen, odaH₂ and the phthalates

The title complexes $[Cu_2(\mu_2-oda)(phen)_4](ClO_4)_2$ (1) 75 (Figure $[Mn_2(\mu_2-oda)(phen)_4(H_2O)_2(oda)_2]^2$ - $[Mn_2(\mu_2-oda)(phen)_4(H_2O)_2(oda)_2(h_2O)_2(oda)_2(h_2O$ *2*). oda)(phen)₄(H₂O)₂]²⁺ (2) (*Figure 3*), were prepared according to the literature methods by McCann and Devereux et al.^{13, 14} The coordination environment about both Cu^{2+} ions in 1 is approximately square-pyramidal with both metals being linked ⁸⁰ via a bridging oda ligand. In the double salt complex 2, the environment about each Mn²⁺ is octahedral with both metals in the cationic and anionic groups being bridged by oda in a similar fashion to 1. Whereas the Mn^{2+} centres of the anionic subunit in 2 each contain a singly bound oda dianion coordinated in the apical 85 position, the cationic unit contains bound water at these equivalent positions.

100

90

95

¹⁵ *Figure 3.* Molecular structures of the dimeric cation and anion subunits in the Mn^{II} double salt complex $[Mn_2(\mu_2 - oda)(phen)_4(H_2O)_2(oda)_2]^{2-}[Mn_2(\mu_2 - oda)(phen)_4(H_2O)_2]^{2+}$ (2)

DNA Binding Studies

5

10

²⁰ In order to examine the interaction of compounds **1** & **2** with DNA, competitive ethidium bromide displacement and fluorescence quenching experiments with calf thymus DNA were conducted (*Table 1*).[†] Complexes **1** & **2** were found to have high apparent DNA binding constants (K_{app}), and low fluorescence ²⁵ quenching values (Q), indicating that both systems have a high

affinity for binding to DNA.

Table 1. Apparent DNA binding constants (K_{app}) and Q values for 1 and 2.[†] Assay conditions; C_{50}/K_{app} : final volume 2 mL, 1.2 μ M EtBr, 1 μ M CT-DNAp, 30 10 mM TES, 0.1 mM Na₂EDTA, pH 7.0; Q: final volume 2 mL, 2.0 μ M EtBr, 20 μ M CT-DNAp, 2 mM NaOAc buffer, 9.3 mM NaCl, 0.1 mM Na₂EDTA, pH 5 0

5.0					
Complex	$C_{50}^{*}(\mu M)$	K_{app}^{**}	Q^{\ddagger}		
1	46.89	2.55 x 10 ⁵	22.64		
2	28.46	4.20×10^5	43.13		
* C ₅₀ = concentration required to reduce fluorescence by 50% (Competitive)					

** $K_{app} = K_e \propto 1.26/C_{50}$ where $K_e = 9.5 \times 10^6 M(bp)^{-1}$ s⁵ Q = equivalent concentration required to reduce fluorescence by 50% (Quenching)

DNA Cleavage Reactions

Relaxation of supercoiled (SC) pUC18 DNA (Form I) into open circular (OC, Form II) and linear (LC, Form III) conformations

- ⁴⁰ was used to quantify the relative cleavage efficiency of **1** & **2**.^{\uparrow} To examine for DNA self-cleaving ability, SC DNA was exposed to both complexes over a concentration range of 1-50 μ *M* for 20 hours in the absence of added H₂O₂ or reductant (*Figure 4(a)*). Complex **1** shows concentration-dependant self-cleaving of SC
- ⁴⁵ (Form I) DNA to OC (Form II) with complete depletion of the parent SC band (I \rightarrow II) between 10-20 μ M (lane 4 & 5 (*a*)). In the presence of added reductant (ascorbate) (*Figure 4(b)*) both complexes exhibit enhanced DNA scission during a shorter timeframe (2hr). While both 1 & 2 induced complete relaxation to OC
- ⁵⁰ Form II (lanes 4 & 8 (*b*)) at 10 μ *M*, the Cu²⁺ complex was found to induce efficient double stranded scission (I \rightarrow III) at a concentration of 20 μ *M*, characterised by the absence of a band in lane 5 (*b*). In order to identify what role molecular O₂ and the metal cations (Cu²⁺/Mn²⁺) play within DNA cleavage, ⁵⁵ experiments were conducted under anaerobic conditions in an
- atmosphere saturated with argon and, separately, in the presence of 100 mM Na₂EDTA (*Figure 4* (c) & (d)). The Mn²⁺ system

was examined at 20 μ *M* over two hours in the presence of ascorbate while the Cu²⁺ system was examined at 20 μ *M* over 20 ⁶⁰ hr without added reductant. Both complexes did not cleave DNA in the absence of oxygen but complex **1** was found to induce some DNA damage in the presence of excess metal chelator (EDTA).

⁶⁵ *Figure 4.* Relaxation of pUC18 by 1 and 2.[†] Cleavage was carried out at 37° C then analyzed by agarose gel electrophoresis[†] (*a*) 20hr incubation in the absence of added oxidant or reductant, lane 1: DNA alone; lanes 2-6: 1, 5, 10, 20, 50 μ M 1; lanes 7-10: 5, 10, 20, 50 μ M 2. (*b*) 2hr incubation in the presence of added ascorbate (at twice complex concentration), lane 1: DNA alone; lanes 70 2-5: 1, 5, 10, 20 μ M 1; lanes 6-9: 1, 5, 10, 20 μ M 2. (*c*) 20hr incubation of 20 μ M 1 in the absence of added oxidant or reductant, lane 1: + 100 mM Na₂EDTA; lane 2: sat. Ar atmosphere. (*d*) 2hr incubation of 20 μ M 0, and 2. (*c*) 20hr incubation of 20 μ M 2 with added ascorbate (at twice complex concentration), lane 1: + 100 mM Na₂EDTA; lane 2: sat. Ar atmosphere.

75 Redox Activity

Figure 5. SOD activity profiles for complexes 1 and 2

 Table 2. SOD concentrations of complexes 1 and 2 equivalent to effect 1U of

 Bovine Erythrocyte SOD activity (50% Inhibition) and Catalase mimetic

 80 potential of 1 and 2 examined as a function of H2O2 disproportionation

<u>^</u>				
Complex	Concentration Equivalent	Number of H ₂ O ₂ molecules		
	to 1U Bovine SOD (μM)	disproportionated by one molecule		
		of complex in the first 5 min ¹⁴		
1	1.300	0		
2	0.024	$6 \ge 10^3$		

Since the catalytic interaction of [Cu(phen)₂]²⁺ and its reduced form, $[Cu(phen)_2]^+$, with the superoxide radical (O_2^{\bullet}) and hydrogen peroxide (H₂O₂) are imperitive for cleaving the phosphodiester backbone in DNA,¹⁵⁻¹⁷ we have examined the ⁸⁵ interaction of complexes 1 and 2 with both these species. Superoxide was generated enzymatically bv the xanthine/xanthine-oxidase system and quantified photometrically by the detector nitro-blue-tetrazolium (NBT). Both complexes 1 and 2 show potent SOD (superoxide dismutase) mimetic activity ⁹⁰ with the Mn^{2+} system being an exceptional catalyst (1U SOD = 24.6 nM) (Figure 5 & Table 2). The catalase mimetic activity of complexes 1 & 2 were examined as a function of oxygen evolution. After the addition of a 30% v/v solution of H_2O_2 to 1 & 2 the O_2 gas evolved was quantified volumetrically (*Table 2*). 95 Only the Mn^{2+} complex (2) was capable of decomposing H₂O₂ and its activity can also be described as exceptional in this regard $(6 \times 10^3 H_2O_2 \text{ molecules disproportionated in 5 min})$. Overall, both complexes 1 & 2 interacted with superoxide to produce hydrogen peroxide (I), but, only the Mn^{2+} complex (2) appears ¹⁰⁰ capable of disproportionates the resulting peroxide (II).

$$I. \qquad 2O_2^{\bullet} + 2H^+ \rightarrow 2H_2O_2 + O_2 \quad (SOD)$$

$$II. \qquad 2H_2O_2 \rightarrow 2H_2O + O_2 \quad (CAT)$$

Antitumour Activity

Table 3. LD_{50} (at $\pm 95\%$ CI) values for complexes 1 and 2, the free ligand phen and the antitumour agent cisplatin, against colorectal cancer lines HT29, SW480 and SW620 over a period of 24 and 96 hours[†] Alan do we need s \pm SD values here? Also can you include the HaCaT results here?

	Antitumour Activity $LD_{50}(\mu M)$					
	HT29		SW480		SW640	
	24 hr	96 hr	24 hr	96 hr	24 hr	96 hr
phen	<200	9.240	<200	10.70	160.00	10.700
1	9.610	>0.001	11.30	0.220	31.00	1.220
2	108.00	0.092	7.460	0.261	58.50	0.342
cisplatin	166.00	4.810	<200	1.290	<200	7.030

The cytotoxicity of 1 & 2 along with the free phen ligand and the clinical antitumour agent cisplatin, were measured at 24 and 96hr intervals using a standard MTT assay against three progressive ¹⁰ colorectal human-derived tumour cell lines (*Table 3*).[↑] Both complexes display remarkable cytotoxicity against all three lines. Low-micromolar LD₅₀ activities for both complexes were found after 24 hrs of exposure and, significantly, these activities reached the nano- and picomolar level after 96 hrs. As the ¹⁵ colorectal tumour lines progress (HT29→SW480→SW620) activity of complex 1, over 96hrs, reduces from pico- to low micomolar, while the activity of 2 remained consistently in the low-mid nanomolar region. It is worth noting that while cisplatin displays significant low-micromolar cytotoxicity against all ²⁰ tumour lines after 96hrs, the activity of 1 & 2, in this period, is

superior to this agent by a factor between $1 \times 10^{1} - 1 \times 10^{5}$.

Cellular Reactive Oxygen Species (ROS) Study

In order to elucidate the relationship between cytotoxicity and ROS generation, complexes 1 & 2, along with phen and cisplatin,

- ²⁵ were exposed to colorectal cancer cells, HT29, pre-treated with the intracellular ROS indicator 2',7'-dichlorofluorescin diacetate (DCFH-DA).[†] In the presence of endogenously generated ROS, DCFH-DA becomes oxidised to release the fluorophore 2',7'dichlorofluorescin (DFC). Results are expressed relative to the
- ³⁰ fluorescent response of the positive control (+Ctrl), hydrogen peroxide, which is considered a potent generator of ROS. Corrections were made using a negative control (-Ctrl), which represents the natural level of cellular ROS generated. Results were recorded at 15, 30, 60, 120 and 180 min intervals and are
- ³⁵ shown in *Figure 6*. Complex **2** was found to be an exceptional generator of ROS with greater activity relative to H_2O_2 (+Ctrl) across the concentration range 1000-250 n*M* and approximate equal activity to peroxide at 125 n*M*. It is worth commenting that this species was almost seven times more active than the next
- ⁴⁰ most effective ROS generator, phen. The activity of the copper(II) complex (1) was somewhat lower than both free phen and complex **2**, indeed **1** needed to be assessed across a higher concentration range (100,000-195 n*M*). The clinical agent cisplatin was the least active of all tested compounds. This is
- ⁴⁵ unsurprising considering it is non-catalytic, it has also been well established that cisplatin only becomes cytotoxic upon its hydrolysis to [Pt(NH₃)₂(OH)₂], which generally occurs between 48-96 hrs.

Figure 6. Generation of endogenous reactive oxygen species (ROS) within the cancer cell line HT29 after exposure to; (*a*) the free ligand 1,10-phenanthroline, (*b*) the clinical antitumour agent cisplatin, (*c*) complex 1 and (*d*) complex 2.

50 In vivo Drug Tolerance

Larvae of the insect *Galleria mellonella* were employed to assess the *in vivo* cytotoxic tolerance of complexes **1** and **2**, the ligand phen and the clinical antitumour agent cisplatin. Larvae of *G. mellonella* (the greater wax moth) have been widely used as a ⁵⁵ convenient and inexpensive *in vivo* screening model to assess the therapeutic potential of novel antimicrobial drugs.^{18, 19} They have yielded results that are considered comparable to those obtained using mammalian models.²⁰ The innate defences of insects, including *G. mellonella*, like those of mammals consist of structural and passive barriers as well as humoral and cellular responses within the haemolymph (analogous to the blood of mammals).²¹ Indeed cellular responses within the haemolymph are often activated by signal transduction systems comparable to mice.²²

65 Table 4. % Kill of G. mellonella larvae after exposures of 5000-100 μg/mL of complexes 1 and 2, the ligand phen and the clinical antitumour drug cisplatin over the period 72 hours[†] Pauraic/Malachy we need to include ±SD values in this table.

	% Kill of Galleria mellonella larve (72 hr)					
	Concentration µg/mL (mg/kg body weight)					
	5000 (333)	2000 (133)	1000 (67)	500 (33)	200 (13)	
phen	100	90	80	0	0	
1	93.3	86.7	50	0	0	
2	93.3	93.3	40	0	0	
cisplatin	100	100	100	60	0	

Testing was carried out in triplicate using ten healthy G. mellonella larvae in the 6th developmental stage. Compounds were tested across the concentration range 5000-100 µg/mL (333-13 mg/kg average body weight) with sterile test solutions being administered via hypodermic injection. Larvae were incubated at $_{75}$ 30°C for 72 hr with survival being monitored at 24 hr intervals and significance being determined using the log rank (Mantel-Cox) method. Death was assessed by the lack of movement in response to stimulus together with discolouration. Results are presented (Table 4) as the mean % kill (± standard deviation) 80 resulting from exposure to tested compound. Galleria exposed to high drug concentrations of 5000 and 2000 µg/mL showed poor tolerance to all tested species. However, at lower concentration ranges 1000-200 µg/mL significant differences were observed. Tolerance of Galleria larvae exposed to complexes 1 and 2 was 85 highest of all tested species (50 and 40% kill at 67 mg/kg respectively, and 0% kill at 33 mg/kg). The clinical antitumour agent cisplatin was the poorest tolerated tested species with high toxicity (60% kill) being observed at 500 µg/mL (33 mg/kg). Encouragingly, the well-established rat LD50 of cisplatin (oral 90 exposure) is reported as 25.8 mg/kg body weight, thus, it appears some agreement between these two models does exist.

Proposed DNA Self-Cleaving Mechanism

To conclude we would like to propose a mechanism by which of ⁹⁵ complex **1** self-activates the phosphodiester backbone in DNA via formation of a π carboxylate radical, concomitantly leading to the reduced formation of [Cu(phen)₂]⁺ (*Figure 7*). Aliphatic carboxylate radicals are known to react by hydrogen abstraction in close competition with decarboxylation.^{23, 24} Generation of a π ¹⁰⁰ carboxylate radical within complex **1** would depend on the strength of the HOMO *d* orbital overlap on Cu²⁺ with the oxygen carboxylate. X-ray crystallography has revealed that the bond length between Cu-O in **1** is 1.974Å and is significantly shorter than the equivalent Mn-O bond in **2** which is 2.147 Å.^{13, 14} However, since the Cu-O bond length may be altered when **1** binds with DNA, it is impossible to know its exact length *in vivo*.

Figure 7. Proposed mechanism of generating C-H bond activators (---)

It is proposed the mechanism proceeds by the following steps: (i) after the binding of 1 to DNA, homolytic cleavage at the 10 Cu-O bond generates the π carboxyl radical (---) and the reduced d^{10} complex $[Cu(phen)_2]^+$, the resultant carboxyl π radical undergoes rapid conversion to σ which decarboxylates to generate CO₂ and R^{\bullet} (---); (*ii*) [Cu(phen)₂]⁺ reacts, as is known, with O₂ to generate the superoxide radical 15 through an intermediate (---) yielding [Cu(phen)₂]²⁺; (*iii*) complex 1 or $[Cu(phen)_2]^{2+}$ subsequently react with O_2^{\bullet} to generate H_2O_2 (as shown in Figure 5 & Table 2); (iv) since 1 does not

- disproportionate hydrogen peroxide (shown in *Table 2*) a subsequent reaction with H_2O_2 in (*a*) or O_2 in (*b*) can generate ²⁰ known metal-oxo (---) and hydroxyl radical (---) bond activators.
- Since nuclease activity was detected in the presence of the chelator EDTA (*Figure 4 (c)*) it would stand to reason that the carboxylate radical or its breakdown product (\mathbb{R}°) appears capable of abstracting \mathbb{H}° from the phosphodiester backbone in DNA. In
- ²⁵ the absence of oxygen, the self-cleaving nuclease potential of **1** is diminished (*Figure 4* (*c*)), and since, in the proposed mechanism, steps (*ii*)-(*iv*) are dependent on molecular oxygen, it also stands to reason that the nuclease potential should be reduced in the absence of these aerobically generated oxo- and hydroxo- bond estimates.
- ³⁰ activators. Futher efforts are currently underway in our laboratory to find further evidence for this proposed mechanism.

Conclusions

- In summary, dinuclear Cu²⁺ and Mn²⁺ bis-phen complexes of the ³⁵ dicarboxylate, octanedioate, represent a significant advancement compared to existing metal-phenanthroline adducts. Their application as new water-soluble DNA-targeted chemotherapeutics is highly significant given their powerful and unprecedented cytotoxicity, encouraging *in vivo* drug tolerance
- and unique modes of action. While both complexes are avid binders of DNA, additionally, the copper(II) system has the capacity to self-cleave DNA, possibly through the generation of a π carboxyl radical, while the manganese(II) system is an exceptional redox catalyst that generates unprecedented levels of
- 45 intracellular ROS within colon cancer cells.

The authors wish to acknowledge financial support from the Dublin Institute of Technology Capacity Building Scheme for Strategic Research progamme (CaBS). This work has been carried out (in part) within the structures of the Focas 50 Research Institute, DIT, funded under The Irish National

Development Plan with assistance from the European Regional Development Fund.

Notes and references

^a Dublin Institute of Technology, Focas Research Institute, Camden Row, 55 Dublin 8, Ireland. E-mail: <u>andrew.kellett@dit.ie</u>, Tel: +353 1 4027986; E-

mail: <u>michael.devereux@dit.ie</u>, Tel: +353 1 4024680 ^b Chemistry Department, National University of Ireland, Maynooth, Co. Kildare, Ireland

^c??? 60 ^d???

- † Electronic Supplementary Information (ESI) available: Experimental procedures, X-ray crystallographic data and biological evaluation studies See DOI: 10.1039/b000000x/
- 1. J. Stubbe and J. W. Kozarich, Chem. Rev., 1987, 87, 1107-1136.
- 65 2. F. Mancin, P. Scrimin, P. Tecilla and U. Tonellato, *Chem Commun* (*Camb*), 2005, 2540-2548.
 - 3. J. A. Cowan, Current Opinion in Chemical Biology, 2001, 5, 634-642.
- S. Borah, M. S. Melvin, N. Lindquist and R. A. Manderville, J. Am. Chem. Soc., 1998, 120, 4557-4562.
- 70 5. M. S. Melvin, J. T. Tomlinson, G. R. Saluta, G. L. Kucera, N. Lindquist and R. A. Manderville, *J. Am. Chem. Soc.*, 2000, **122**, 6333-6334.
- P. U. Maheswari, S. Roy, H. den Dulk, S. Barends, G. van Wezel, B. Kozlevcar, P. Gamez and J. Reedijk, *J. Am. Chem. Soc.*, 2006, 128, 710-711.
- 75 7. D. S. Sigman, D. R. Graham, V. D'Aurora and A. M. Stern, J. Biol. Chem., 1979, 254, 12269-12272.
 - 8. B. R. James and R. J. P. Williams, J. Chem. Soc., 1961, 2007-2019.
 - M. Pitie, B. Donnadieu and B. Meunier, *Inorg. Chem.*, 1998, 37, 3486-3489.
- 80 10. M. Pitie and B. Meunier, *Bioconjug Chem*, 1998, 9, 604-611.
- M. Pitié, B. Sudres and B. Meunier, *Chem. Comm.*, 1998, 2597-2598.
 A. Kellett, M. McCann, M. O'Connor, M. McNamara, P. Lynch, G. Rosair, V. McKee, B. Creaven, M. Walsh, S. McClean, A. Foltyn, D. O'Shea, O. Howe and M. Devereux, *Dalton Trans.*, 2010, DOI: 10.1039/CDDT01607A.
- 10.1039/C0DT01607A.
 M. Devereux, M. McCann, J. F. Cronin, G. Ferguson and V. McKee, *Polyhedron*, 1999, 18, 2141-2148.
 - M. T. Casey, M. McCann, M. Devereux, M. Curran, C. Cardin, M. Convery, V. Quillet and C. Harding, *Chem. Comm.*, 1994, 2643-2645.
- 90 15. L. E. Marshall, D. R. Graham, K. A. Reich and D. S. Sigman, *Biochemistry*, 1981, **20**, 244-250.
 - T. B. Thederahn, M. D. Kuwabara, T. A. Larsen and D. S. Sigman, J. Am. Chem. Soc., 1989, 111, 4941-4946.
- B. C. Bales, T. Kodama, Y. N. Weledji, M. Pitie, B. Meunier and M. M.
 Greenberg, *Nucleic Acids Res*, 2005, 33, 5371-5379.
- M. Brennan, D. Y. Thomas, M. Whiteway and K. Kavanagh, FEMS Immunol Med Microbiol, 2002, 34, 153-157.
- R. Rowan, C. Moran, M. McCann and K. Kavanagh, *Biometals*, 2009, 22, 461-467.
- 100 20. K. Kavanagh and E. P. Reeves, FEMS Microbiol Rev, 2004, 28, 101-112.
 - 21. G. B. Dunphy and G. S. Thurston, *Insect Immunity*, CRC Press, Boca Raton, FL., 1990.
 - 22. A. M. Fallon and D. Sun, Insect Biochem Mol Biol, 2001, 31, 263-278.
 - 23. P. S. Skell and D. D. May, J. Am. Chem. Soc., 1981, 103, 967-968.
- 105 24. P. S. Skell and D. D. May, J. Am. Chem. Soc., 1983, 105, 3999-4008.