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Abstract 

Many chemotherapeutic drugs are therapeutically non-selective and do not distinguish 

between healthy cells and tumour cells which can result in severe side effects and 

toxicity. Drug delivery systems can be used to target specific cells and therefore may 

eliminate many of the side effects, increasing drug efficiency and efficacy, and 

controlling drug release. One possible strategy for targeted drug delivery is to use unique 

molecular markers such as folate receptors in cancer cells. In this work the cytotoxicity of 

a novel cyclodextrin-folate conjugate, 6-deoxy-6-[(1-(-2amino)ethylamino)folate-β-

cyclodextrin (CDEnFA) was studied using the MTT assay and the MCF-7 (Breast), HeLa 

(Cervical), A549 (Lung cancer) and BEAS-2B (normal Lung) cell lines. 

The MTT assay showed that the drug delivery vehicle CDEnFA is not cytotoxic towards 

the cell lines studied even towards the normal BEAS-2B cell line and therefore it is 

expected that it is safe for medical use. The inclusion complex CDEnFA:MTX has 

superior cytotoxic activity towards all of the cancer cell lines studied compared to the 

drug MTX alone and CDEnFA:MTX is four times less cytotoxic than the drug towards 

the normal cell line. The observed toxicity is attributed solely to MTX since CDEnFA did 



not exhibit significant cytotoxicity. These results also suggest that the drug remains 

bioactive even after inclusion in the CD cavity. The cytotoxicity trend observed for 

CDEnFA:MTX in this study is MCF-7 (Breast) > A549 (Lung) > HeLa (Cervical) > 

BEAS-2B (normal Lung).  

 

Keywords: Cyclodextrin, Cytotoxicity, Drug delivery, Folate. 

 

Introduction 

 

Many chemotherapeutic drugs are therapeutically non-selective and do not distinguish 

between healthy cells and tumour cells which can result in severe side effects and 

toxicity. This toxicity can limit the dose of drug which can be used. Chemotherapeutics 

can also have a narrow tumour spectrum being effective against some cancers and 

ineffective against others and therefore one of the goals of medicinal chemistry is to 

direct an effective therapeutic dose to the required site of action.  Drug delivery systems 

are molecular tools which can be used to target specific sites without interaction at other 

sites [1]. In this way targeted delivery systems can eliminate some of the above 

drawbacks, increasing drug efficiency and efficacy, controlling drug release and 

minimising harmful side effects [2]. For chemotherapy these systems must be capable of 

recognising cancer cells, specifically targeting these cells and delivering an effective 

therapeutic dose. One possible strategy for targeted drug delivery is to use unique 

molecular markers in cancer cells that are not expressed or have low expression in normal 



cells. Recently there has been interest in exploiting folate receptors for tumour specific 

targeted delivery of therapeutics.  

Folate is essential for the synthesis of amino acids such as serine, glycine and methionine 

which occurs in the cytosol and mitochondria.  The human body cannot synthesise folate 

and it is therefore obtained via the daily diet from leafy vegetables, citrus fruits, beans 

and whole grains.  Most human cells contain folate receptor (FR) sites located on the 

cellular membrane but cancer cell growth requires a lot more folate in comparison with 

normal cells and therefore cancer cells can express over 500 times more FRs [3].  FRs 

provide a route for internalisation of folates into the cytosol of cells and there are at least 

four forms, known as α, β, δ and γ/γ’. Most work to date has concentrated on the first 

three as potential disease markers [4].  These FRs have similar amino acid sequences but 

differ in their expression patterns. FR-α, β and δ are comprised of 

glycosylphosphatidylinositol-linked proteins which are expressed in many carcinomas 

but are not expressed or have low expression in normal cells [5].  FR-α is expressed in 

several cancers including ovarian, uterine, testicular and to a lesser extent in breast, colon 

and renal cancers [3].  It is also expressed in some normal epithelial cells but access from 

the bloodstream is limited. FR-β is expressed in chronic and acute myelogenous 

leukaemia, macrophages associated with rheumatoid arthritis and other inflammatory 

diseases [6].  FR-δ is expressed in regulatory T-cells [7].  These differences in expression 

of FRs can be exploited for chemotherapy and the FRs provide ideal targets for effective 

targeted drug delivery.  

Several drug delivery systems based on folate derivatives are currently in development. 

For example Chen et al. have developed liposomes comprised of folate (FA) conjugated 



with distearoylphosphatidylethanolamine (DSPE) derivatised with polyethyleneglycol 

(PEG) [8].  The FA-PEG-DSPE delivery system was loaded with arsenic trioxide (As2O3) 

which has potential anticancer applications and the resultant drug delivery system 

demonstrated higher anticancer activity than As2O3 alone against solid tumour cells. 

Pinhassi et al. have conjugated the natural polysaccharide arabinogalactan to folate and 

the drug methotrexate through the peptide Gly-Phe-Leu-Gly and have reported that the 

conjugate system shows increased cytotoxicity towards Chinese hamster ovary cancer 

cells which over-express FRs in comparison to normal cells which do not express FRs 

[9].  Due to their low toxicity and inclusion properties cyclodextrins are proposed here as 

suitable drug carriers for use in drug delivery systems.  

The partial hydrolysis of starch using glucosyltransferase gives cyclic sugars containing 

six to eight α-(1-4)-linked D-glucopyranose units [10].  The cyclodextrins (CDs) 

produced can be distinguished on the basis of the number of α-D-glucose units i.e. α-

cyclodextrin (six glucose units), β-cyclodextrin (seven glucose units), and γ-cyclodextrin 

(eight glucose units) (Figure 1).  

 

 

Figure 1. Structure of a) α–cyclodextrin, b) β–cyclodextrin and c) γ-cyclodextrin 

 



The toxicological properties of cyclodextrins have been reviewed and in general they are 

classified as non-toxic materials which may cause some eye or skin irritation [11, 12]. 

This has led to the use of CDs in the cosmetic, food, flavour and pharmaceutical 

industries [11].  As well as improving solubility, β-CD is used to protect several 

compounds against various degradation processes such as photo-degradation, thermal 

degradation and hydrolysis [13-18].  The hydrophobic cavity can include many guest 

molecules while the multitude of hydroxyl groups can be modified to give a wide range 

of derivatives.  Caliceti et al. reported a C6 monosubstituted CD folate conjugate with a 

PEG spacer as a potential drug delivery system [19].  However because of the side-chain 

the conjugate is flexible which allows self-inclusion of the folate group in the CD cavity.  

This hinders inclusion of drugs in the cavity and prevents use of the conjugate as a drug 

delivery system.  Previously we reported the synthesis and stability of a folate-modified 

β-cyclodextrin without a spacer group [20].  The γ isomer of the mono-substituted 

derivative 6-deoxy-6-[(1-(2-amino)ethylamino)folate]--cyclodextrin (CDEnFA) was 

synthesised in high yield and was shown to be considerably more photo-stable than free 

folic acid in both the solid state and aqueous solution.  It is now proposed that CDEnFA 

can be used as a drug delivery system via drug inclusion in the CD cavity. Internalisation 

of the drug in cells can be accomplished via receptor-mediated endocytosis.   

Methotrexate (MTX), is the model drug used in this work and is an example of an 

antifolate.  It was one of the first chemotherapeutic drugs developed in the 1950s and is 

used to treat various types of cancer including breast, bladder and bone marrow cancer as 

well as leukaemia and rheumatoid arthritis.  MTX is thought to act as a chemotherapeutic 

due to the fact that it has a structure very similar to the structure of folates and folic acid 



(Figure 2). Therefore MTX is a competitive inhibitor since it prevents folic acid 

metabolism by preferentially binding to enzymes. 
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Figure 2. Chemical structure of (a) methotrexate and (b) folate. 

 

There is debate as to the exact mechanism of action of MTX but there are some reports 

that show that after entering the cell, methotrexate is polyglutamated by the enzyme 

folylpolyglutamate synthase. MTX and its polyglutamates then bind to and inhibit the 

enzyme dihydrofolate reductase (DHFR) which is required to catalyse the conversion of 

dihydrofolate (DHF) to tetrahydrofolate (THF) during the synthesis of DNA [21].  As 

tetrahydrofolate stores are depleted, synthesis of thymidine monophosphate (dTMP) is 



reduced, which in turn reduces the synthesis of amino acids such as methionine and 

ultimately inhibits DNA synthesis (Figure 3) [24].  Single and double strand breaks occur 

in the DNA helix because DNA synthesis is interrupted while it is still in progress and 

because repair mechanisms remove the damaged DNA. Cell death then occurs via 

necrosis or apoptosis [23]. 

 

 

Figure 3. The folate pathway where MTX = methotrexate; MTXglu = methotrexate 

polyglutamate; RFC1 = reduced folate carrier; FPGS = folylpolyglutamate synthase; TS 

= thymidylate synthase; 5,10-CH2-THF = 5,10-methylene tetrahydrofolate; MTHFR = 

methylene tetrahydrofolate reductase; 5-CH3-THF = 5-methyl tetrahydrofolate; AICAR = 

5-aminoimidazole-4-carboxamide-ribonucleotide; AICART’ASE = AICAR 

transformylase; FAICAR = formyl-AICAR, dUMP = deoxyuridine monophosphate, 

dTMP = thymidine monophosphate [24]. 

 

http://rheumatology.oxfordjournals.org/content/47/3/249/F1.lar


However to achieve high efficacy, high doses of MTX are required for several reasons. 

To be effective MTX must be internalised into cells. But MTX is anionic and cannot 

permeate negatively charged cell membranes due to repulsion, unless a high 

concentration is used. Also the enzyme DHFR has a greater affinity for folate than for 

MTX unless the concentration of MTX is high [24].  MTX also has a number of other 

disadvantages. MTX has a narrow tumour spectrum and also does not cross the blood 

brain barrier and therefore cannot be used for solid tumours and brain tumours.  

Resistance to MTX is also possible. A system for the delivery of MTX to the required 

site of action may avoid some of these disadvantages and therefore MTX was chosen as 

the model drug for this work. 

There are two different systems used by cells for the uptake of folates and folate-like 

molecules such as MTX.  The first are folate receptors (FR) that internalise folates by 

receptor-mediated endocytosis which is cellular uptake of a substance by invagination of 

the membrane. The second system is a reduced-folate carrier (RFC) which uses an anion 

exchange transport mechanism to internalise folates. RFC is present in all cells and is 

responsible for the majority of folate transport across cell membranes. The binding 

affinity for folates and MTX differ for the two systems.  FRs have a high binding affinity 

for folates but a low affinity for MTX while the reverse is true for the RFC [25].  

We now report an in vitro evaluation of the cytotoxicity of CDEnFA in various cell lines 

and its inclusion of and effect on the bioavailability of methotrexate.  In accordance with 

the EU policy of Reduction, Replacement and Refinement (RRR) an in vitro rather than 

an in vivo model is used to assess the cytotoxic response of the system using the MTT 

assay [26].  



Materials and methods 

-cyclodextrin was obtained from Wacker Chemie (Munich, Germany) and 6-deoxy-6-

[(1-(2-amino)ethylamino)folate]--cyclodextrin (CDEnFA) was synthesised as 

previously reported [20].  The inclusion complex, CDEnFA:MTX, was prepared by the 

paste method by combining MTX and CDEnFA in a 1:1 molar ratio. Briefly CDEnFA 

was stirred with a minimum volume of water to obtain a homogeneous paste. Then, MTX 

powder was slowly added and the mixture was stirred for 45 min. During the process a 

few drops of water were introduced to maintain a suitable consistency. The resulting 

paste was dried in an oven at 45 °C for 48 h and the solid was finally ground and stored 

in the dark. The inclusion complex CDEnFA:MTX was analysed by 1H NMR where 

shifts of protons H3 and H5 of cyclodextrin were observed indicating successful 

complexation. Previously it was reported that MTX forms an inclusion complex with -

cyclodextrin via the methyl group of MTX included inside the CD cavity [27].  

All cell culture reagents and media, cisplatin, methotrexate and 3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide (MTT) were obtained from Sigma Aldrich Ltd. 

(Dublin, Ireland).  Cell lines were purchased from the American Type Culture Collection. 

HeLa is a cervical cancer cell line taken from patient Henrietta Lacks in 1951 while 

MCF-7 is a breast cancer cell line isolated from a 69 year old Caucasian woman in 1970. 

A549 is a lung cancer cell line first developed in 1972 and BEAS-2B is a normal lung 

cell line.  

 

Cell culture 



The MCF-7 cell line (passages 5-15) was grown at 37 oC in a humidified atmosphere 

with 5 % CO2 in MEM medium containing Foetal Calf Serum (FBS, 10 %), L-glutamine 

(2 mM), penicillin/streptomycin solution (100 U/ml penicillin and 100 μg/ml 

streptomycin), and sodium pyruvate solution (1 % of 100 mM). The other cell lines, 

A549 (passages 5-15), BEAS-2B (passages 5-15) and HeLa (passages 5-15), were grown 

at 37 oC in a humidified atmosphere with 5 % CO2 in RPMI-1640 medium containing 

Foetal Calf Serum (FBS, 10 %), L-glutamine (2 mM) and penicillin/streptomycin 

solution (100 U/ml penicillin and 100 μg/ml streptomycin).  Cells were grown to 

confluence and subcultured after being trypsinised with protease enzyme trypsin. 

 

Preparation of test solutions 

Test solutions were prepared in deionised water and diluted with cell culture medium, 

under laminar flow and sterile conditions. Cisplatin was used as a standard and both 

DMSO and cell culture medium as positive and negative controls respectively. The 

concentration range used for the cytotoxicity assays was 0.5 μM – 50 μM for all samples, 

standard and controls.  

 

Cytotoxicity assay 

Cell viability was monitored using the MTT assay by measurement of absorption at 550 

nm in a 96 well micro-plate. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) is a soluble tetrazolium salt yielding a yellow solution in phosphate 

buffered saline (PBS pH 7.4) and is converted to purple 3,5-diphenyl-1-(4,5-dimethyl-2-

thiazolyl)formazane (formazan) by enzymes in living cells. Each cell line was seeded at a 



density of 2000 cells per well per 100 µl medium and incubated at 37 °C in a 5% CO2 

humidified atmosphere. After 24 hr, the cell culture medium in each well was replaced 

with 100 µl medium containing the test compounds. Nine replicate wells were used for 

each control and test solution per micro-plate. After 24 hr of exposure, the control 

medium or test solution was removed. The cells were washed with PBS (100 μl of 0.1 M, 

pH 7.4) and 100 μl of freshly prepared MTT (5 mg/ml of MTT in un-supplemented 

medium) was added to each well. After a 4 hr incubation, the medium was discarded and 

the cells were rinsed with PBS (100 μl of 0.1 M, pH 7.4) and DMSO (100 μl) was added 

to each well to extract the dye. The plates were shaken at 240 rpm for 5 min and the 

absorbance was measured at 550 nm in a Varioscan plate reader. 

 

Statistics 

Cytotoxicity data were expressed as mean percentage cell viability relative to control 

(100%) ± standard deviation (SD). Statistical analyses were carried out using one-way 

analyses of variance (ANOVA) followed by a post-ANOVA Dunnett’s test and statistical 

significance was accepted at p ≤ 0.05 at 95 % confidence levels for all tests. An IC50 

value was calculated and is the concentration of compound required to give 50 % cell 

viability. 

 

Results and discussion of cytotoxicity study 

Cisplatin was used as a standard in the MTT assay and IC50 values of 106.49 ± 10.44 and 

0.9 ± 0.05 μM were obtained for the A549 cell line after 24 and 96 h incubation 

respectively. Values of 305.95 ± 26.14 and 3.20 ± 0.48 μM were obtained for the HeLa 



cell line after 24 and 96 h incubation respectively. These values compare favourably with 

Kellett et al. [28]. 

The results of the MTT assay obtained for the model drug MTX are shown in figure 4 for 

each cell line. 

 

 

Figure 4. Effect of MTX on the viability of HeLa, MCF-7, A549 and BEAS-2B cells 

following a 24 hr incubation at concentrations of 0.5, 1, 5, 10 and 50 μM MTX. (* results 

which are significantly different to the control (p0.05 at 95% confidence)) 

 

It can be seen from figure 4 that MTX demonstrates a statistically significant cytotoxicity 

towards all cell lines studied even at a low concentration of 0.5 μM MTX. However there 

is some selectivity demonstrated by these results. MTX shows the greatest cytotoxicity 

Cytotoxicity MTX

0

20

40

60

80

100

120

0 0.5 1 5 10 50
Concentration      

%
 V

ia
li
b

il
it

y

HeLa

MCF-7

A549

BEAS-2B

μ M

Control

* 

* * * * 
* 

* * * 

* 
* 

* * 

* 
* 

* 

* 

* * 
* 



towards the MCF-7 cell line while HeLa and A549 cells show a reasonable viability. This 

explains the use of MTX for the treatment of breast cancer and these results also show 

that the drug may have a narrow tumour spectrum. As mentioned earlier there are two 

different systems used by cells for the uptake of folate-like molecules: folate receptors 

(FR) which internalise folates by receptor-mediated endocytosis and the reduced-folate 

carrier (RFC) which uses an anion exchange transport mechanism.  FRs have a low 

affinity for MTX and therefore the drug is normally internalised via RFC which is present 

in all cells. The HeLa, A549 and BEAS-2B cell lines behave in a similar manner and 

show cell viabilities in the range 60-63 % after 24 hr incubation with 50 μM MTX. These 

results compare favourably with Patel who studied the cytoxicity of MTX towards these 

cell lines. An exact comparison cannot be made since these authors used a 72 hr 

incubation period [29]. It has been reported that HeLa cells have high expression of FR 

while A549 cells have low FR expression [8, 25].  Since there was no great difference 

observed in the viabilities of HeLa and A549 cells towards MTX it suggests that both of 

these cell lines use the RFC system to internalise the drug. It is interesting to note that 

MTX showed similar cytotoxicity towards the normal lung and lung cancer lines which 

demonstrates the necessity for a MTX delivery system which would target the tumour 

cells only.  

The MCF-7 line behaves very differently to the others and shows a viability of only 12 % 

when exposed to 50 μM MTX for 24 hours. The low viability of MCF-7 cells could be 

explained on the basis that these cells use a different route for internalisation of MTX 

such as the FR pathway. However MCF-7 cells are known to have low expression of FR 

[8, 25]. It may be suggested that the enhanced cytotoxicity of MTX towards MCF-7 cells 



results from the use of a combination of the FR and RFC routes by these cells for uptake 

of the drug. At the lower concentrations of MTX similar trends were observed. But all of 

the cell lines show viabilities in the range 94-86 % after 24 hr incubation with both 0.5 

and 1 μM MTX. On this basis MTX has been shown to be an effective chemotherapeutic 

towards the cell lines studied but only at high concentrations in excess of 5 μM. 

The results of the cytotoxicity assay obtained for the CDEnFA drug delivery system are 

shown in figure 5 for each cell line. 

 

 

Figure 5. Effect of CDEnFA on the viability of HeLa, MCF-7, A549 and BEAS-2B cells 

following a 24 hr incubation at concentrations of 0.5, 1, 5, 10 and 50 μM CDEnFA. (* 

results which are significantly different to the control (p0.05 at 95% confidence)) 
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It can be seen from figure 5 that the drug delivery system CDEnFA does not show a 

significant cytotoxicity at a concentration of 0.5 μM towards any of the cell lines studied. 

In particular it should be noted that CDEnFA at this concentration is not cytotoxic 

towards the normal cell line BEAS-2B. This is a very exciting result and shows that the 

material is biocompatible at this concentration. Even though cell viability is statistically 

significantly different to the control at concentrations of 1, 5 and 10 μM CDEnFA the 

viability remains in the range 90-94% for all cell lines. Zhang et al. and Oh et al. have 

suggested that drug delivery systems are biocompatible when cell viabilities remain 

greater than 90 % [30, 31].  This is the first reported study of the cytotoxicity of CDEnFA 

and the results compare very favourably with other proposed drug delivery systems. For 

example Zhang et al. showed cell viabilities of 93.3 % and 97.6 % for HeLa and 

fibroblast (FB) cells respectively towards folic acid-glutathione-gold nanoparticles [30]. 

Oh et al. obtained viabilities in excess of 90 % for the osteosarcoma Saos-2 and MG-63 

cells lines when exposed to a layered double hydroxide (LDH) Mg2Al(OH)6 which they 

have proposed as a new system for delivery of MTX [31]. The results obtained for 

CDEnFA provide some evidence that it has potential applications as a drug delivery 

system. 

The results of the cytotoxicity assay obtained for the inclusion complex CDEnFA:MTX 

are shown in figure 6 for each cell line. 

 



 

Figure 6. Effect of CDEnFA:MTX on the viability of HeLa, MCF-7, A549 and BEAS-

2B cells following a 24 hr incubation at concentrations of 0.5, 1, 5, 10 and 50 μM 

CDEnFA:MTX.  (* results which are significantly different to the control (p0.05 at 95% 

confidence)) 

 

The results obtained from the MTT assay for CDEnFA:MTX have a similar profile to 

those obtained for the drug alone.  Therefore it can be seen from figure 6 that 

CDEnFA:MTX demonstrates a significant cytotoxicity towards all cell lines studied at 

concentrations of 0.5, 1, 5, 10, 50 μM. However there are obvious differences in cell 

viability in the presence of CDEnFA:MTX in comparison to MTX. HeLa and A549 cell 

lines behave in a similar manner and show cell viabilities in the range 52-60 % after 24 hr 
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incubation with 50 μM CDEnFA:MTX.  The biggest differences between MTX and 

CDEnFA:MTX can be seen from the cell viabilities of the BEAS-2B and MCF-7 cell 

lines. Figures 7 and 8 compare the results obtained for the CDEnFA host, MTX and the 

inclusion complex CDEmFA:MTX, with these cell lines. 

 

 

Figure 7. Effect of CDEnFa, MTX and CDEnFA:MTX on the viability of MCF-7 cells 

following a 24 hr incubation at concentrations of 0.5, 1, 5, 10 and 50 μM.  (* results 

which are significantly different to the control (p0.05 at 95% confidence)) 
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It is obvious from figure 7 that inclusion of MTX in the cyclodextrin host has enhanced 

the efficacy of the drug.  Even at the lowest concentration of 0.5 μM used the cell 

viability has decreased from 88 % for MTX to 64 % for CDEnFA:MTX. There are no 

comparable reports of a cyclodextrin-based drug delivery system for MTX.  However 

comparisons can be made with other targeted drug delivery systems. Oh et al. reported 

Saos-2 cell viabilities of ~95 and ~55 % after 24 hr incubation with MTX and MTX-LDH 

[31]. However Wang et al. reported no significant difference in MCF-7 cell viability 

when treated with the anticancer drug paclitaxel (PTX) and PTX-loaded micelles 

composed of deoxycholic acid-O-carboxymethylated chitosan-folic acid [32].  

Figure 8 compares the results obtained for the CDEnFA host, MTX and the inclusion 

complex CDEnFA:MTX towards the BEAS-2B normal cell line. 

 



 

Figure 8. Effect of CDEnFA, MTX and CDEnFA:MTX on the viability of BEAS-2B 

cells following a 24 hr incubation at concentrations of 0.5, 1, 5, 10 and 50 μM. (* results 

which are significantly different to the control (p0.05 at 95% confidence)) 

 

The BEAS-2B line shows similar viability at concentrations of 0.5 and 1 μM MTX and 

CDEnFA:MTX. The results shown in figure 8 however show that the viability of the 

normal cell line BEAS-2B improved when MTX is included in the cyclodextrin host in 

comparison to the drug alone.  Although the difference is moderate these results suggest 

that the new drug delivery system may have some improved selectivity towards cancer 

cell lines compared to normal cell lines.  
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Conclusion 

An IC50 value shown below in Table 1 was calculated for each test compound. 

 

Table 1. IC50 values for CDEnFA, MTX and the Inclusion Complex CDEnFA:MTX 

 

The MTT assay showed that the drug delivery vehicle CDEnFA is not cytotoxic towards 

the cell lines studied even towards the normal BEAS-2B cell line and therefore it is 

expected that it is safe for medical use. The inclusion complex CDEnFA:MTX has 

superior cytotoxic activity towards all of the cancer cell lines studied compared to the 

drug MTX alone. And CDEnFA:MTX is four times less cytotoxic towards the normal 

cell line than the drug alone. The observed toxicity is attributed solely to MTX since 

CDEnFA did not exhibit significant cytotoxicity. These results also suggest that the drug 

remains bioactive even after inclusion in the CD cavity. The cytotoxicity trend observed 

for CDEnFA:MTX in our study is MCF-7 (Breast) > A549 (Lung) > HeLa (Cervical) > 

BEAS-2B (normal Lung).  

The effectiveness of many anticancer agents such as MTX depends on their uptake by 

cells and their ability to bind to DNA or cleave DNA.  Although only a small number of 

Cell line CDEnFA (Conc µM) MTX (Conc µM) CDEnFA:MTX (Conc µM) 

HeLa  1290.6±657 82.4±4.4 49.89±7.7 

MCF-7 1316.4±759 9.4±1.5 1.08±1.1 

A549 1119±557 153.5±16.5 117.2±11.2 

BEAS-2B 1245.9±623 106.3±10.7 545.1±62.9 



cell lines have been studied the cytotoxic properties of the inclusion complex 

CDEnFA:MTX presented here suggest that the complex is internalised in cells. The 

folate moiety in CDEnFA may play an important role in enhancing the activity of MTX 

via increased cellular uptake through receptor-mediated endocytosis and therefore 

increased internalisation of the drug.  Further work is now required in order to explain the 

cytotoxic profiles and to investigate if indeed the complex is taken up by cells and to 

determine the localisation of the material in cells.  
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