12 research outputs found
Electrical field stimulation improves bone mineral density in ovariectomized rats
Osteoporosis and its consequent fractures are a great social and medical problem mainly occurring in post-menopausal women. Effective forms of prevention and treatment of osteoporosis associated with lower costs and the least side effects are needed. Electrical fields are able to stimulate osteogenesis in fractures, but little is known about their action on osteoporotic tissue. The aim of the present study was to determine by bone densitometry the effects of electrical stimulation on ovariectomized female Wistar rats. Thirty rats (220 ± 10 g) were divided into three groups: sham surgery (SHAM), bilateral ovariectomy (OVX) and bilateral ovariectomy + electrical stimulation (OVX + ES). The OVX + ES group was submitted to a 20-min session of a low-intensity pulsed electrical field (1.5 MHz, 30 mW/cm²) starting on the 7th day after surgery, five times a week (total = 55 sessions). Global, spine and limb bone mineral density were measured by dual-energy X-ray absorptiometry (DXA Hologic 4500A) before surgery and at the end of protocol (84 days after surgery). Electrical stimulation improved (P < 0.05) global (0.1522 ± 0.002), spine (0.1502 ± 0.003), and limb (0.1294 ± 0.003 g/cm²) bone mineral density compared to OVX group (0.1447 ± 0.001, 0.1393 ± 0.002, and 0.1212 ± 0.001, respectively). The OVX + ES group also showed significantly higher global bone mineral content (9.547 ± 0.114 g) when compared to both SHAM (8.693 ± 0.165 g) and OVX (8.522 ± 0.207 g) groups (P < 0.05). We have demonstrated that electrical fields stimulate osteogenesis in ovariectomized female rats. Their efficacy in osteoporosis remains to be demonstrated.Universidade Federal de São Paulo (UNIFESP) Escola Paulista de Medicina Divisão de EndocrinologiaCampus Baixada Santista Universidade Federal de São Paulo (UNIFESP) Divisão de Ciências da SaúdeUniversidade de São Paulo Departamento de BioengenhariaUNIFESP, EPM, Divisão de EndocrinologiaCampus Baixada Santista UNIFESP, Divisão de Ciências da SaúdeSciEL
Electric field induced ionic calcium incorporation in bone cell cultures.
Acredita-se que sinais elétricos endógenos afetem remodelamento, metabolismo, reparo e crescimento ósseos. Existe uma ampla literatura que trata do efeito de sinais elétricos externos sobre as respostas de síntese, mitogênese e proliferação em osteoblastos e células ósseas in vitro. Acredita-se que as respostas fisiológicas ao estimulo elétrico sejam devidas a mecanismos celulares que envolvem variações na concentração citosólica de cálcio. No presente estudo esse efeito celular foi observado através da estimulação direta, por campo elétrico de intensidade fisiologicamente significativa de 10mV/cm e frequência 1,5 MHz, de células ósseas em cultura primária obtidas a partir da calota calvária de ratos da raça Sprague-Dawley. Os mecanismos de transdução do campo elétrico são investigados pela mensuração em tempo real do efeito do campo elétrico na concentração citosólica de Ca2+ utilizando-se técnica de fluorescência de Fura-2, em um sistema que permite a medida em células individuais. As estimulações elétricas resultaram em variações significativas na concentração de cálcio citosólico. Mais especificamente, observou-se um aumento na amplitude e na duração das oscilações de cálcio iônico, com tempos de latência variáveis para as células estudadas.Endogenous electrical signals have been thought to affect bone remodeling, metabolism, healing and growth. Much literature exists concerning the effect of external electrical signals on synthetic, mitogenic, and proliferative responses of osteoblasts or osteoblast-like cells in vitro. Physiological responses to electrical stimulation are thought to be due to cellular mechanisms involving cytosolic calcium concentration changes. In this study this cellular effect was observed by directly stimulating primary culture bone cells from Sprague-Dawley rat calvaria at physiological significant field strength of 10 mV/cm and frequency 1,5 MHz. Electric field transduction mechanisms are investigated by measuring the real-time electric field effect on cytosolic Ca+2 concentrations using Fura-2 fluorescence technology in a system capable of measurement on a cell-by-cell basis. The electrical stimulations resulted in significant changes in cytosolic calcium concentration. More specifically, an increase was noted in calcium oscillation amplitude and duration, and a variable response latency period for the cells studied
Electric field induced ionic calcium incorporation in bone cell cultures.
Acredita-se que sinais elétricos endógenos afetem remodelamento, metabolismo, reparo e crescimento ósseos. Existe uma ampla literatura que trata do efeito de sinais elétricos externos sobre as respostas de síntese, mitogênese e proliferação em osteoblastos e células ósseas in vitro. Acredita-se que as respostas fisiológicas ao estimulo elétrico sejam devidas a mecanismos celulares que envolvem variações na concentração citosólica de cálcio. No presente estudo esse efeito celular foi observado através da estimulação direta, por campo elétrico de intensidade fisiologicamente significativa de 10mV/cm e frequência 1,5 MHz, de células ósseas em cultura primária obtidas a partir da calota calvária de ratos da raça Sprague-Dawley. Os mecanismos de transdução do campo elétrico são investigados pela mensuração em tempo real do efeito do campo elétrico na concentração citosólica de Ca2+ utilizando-se técnica de fluorescência de Fura-2, em um sistema que permite a medida em células individuais. As estimulações elétricas resultaram em variações significativas na concentração de cálcio citosólico. Mais especificamente, observou-se um aumento na amplitude e na duração das oscilações de cálcio iônico, com tempos de latência variáveis para as células estudadas.Endogenous electrical signals have been thought to affect bone remodeling, metabolism, healing and growth. Much literature exists concerning the effect of external electrical signals on synthetic, mitogenic, and proliferative responses of osteoblasts or osteoblast-like cells in vitro. Physiological responses to electrical stimulation are thought to be due to cellular mechanisms involving cytosolic calcium concentration changes. In this study this cellular effect was observed by directly stimulating primary culture bone cells from Sprague-Dawley rat calvaria at physiological significant field strength of 10 mV/cm and frequency 1,5 MHz. Electric field transduction mechanisms are investigated by measuring the real-time electric field effect on cytosolic Ca+2 concentrations using Fura-2 fluorescence technology in a system capable of measurement on a cell-by-cell basis. The electrical stimulations resulted in significant changes in cytosolic calcium concentration. More specifically, an increase was noted in calcium oscillation amplitude and duration, and a variable response latency period for the cells studied
Mechanical vibration preserves bone structure in rats treated with glucocorticoids
Glucocorticoids are an important cause of secondary osteoporosis in humans, which decreases bone quality and leads to fractures. Mechanical stimulation in the form of low-intensity and high-frequency vibration seems to be able to prevent bone loss and to stimulate bone formation. The objective of this study was to evaluate the effects of mechanical vibration on bone structure in rats treated with glucocorticoids. Thirty 3-month-old adult male Wistar rats were randomized to three groups: control (C), glucocorticoid (G), and glucocorticoid with vibration (CV). The G and GV groups received 3.5 mg/kg/day of methylprednisolone 5 days/week for a duration of 9 weeks, and the C group received vehicle (saline solution) during the same period. The CV group was vibrated on a special platform for 30 min per day, 5 days per week during the experiment. The platform was set to provide a vertical acceleration of 1 G and a frequency of 60 Hz. Skeletal bone mass was evaluated by total body densitometry (DXA). Fracture load threshold, undecalcified bone histomorphometry, and bone volume were measured in tibias. Glucocorticoids induced a significantly lower weight gain (-9.7%) and reduced the bone mineral content (-9.2%) and trabecular number (-41.8%) and increased the trabecular spacing (+98.0%) in the G group, when compared to the control (C). Vibration (CV) was able to significantly preserve (29.2%) of the trabecular number and decrease the trabecular spacing (+ 26.6%) compared to the G group, although these parameters did not reach C group values. The fracture load threshold was not different between groups, but vibration significantly augmented the bone volume of the tibia by 21.4% in the CV group compared to the C group. Our study demonstrated that low-intensity and high-frequency mechanical vibration was able to partially inhibit the deleterious consequences of glucocorticoids on bone structure in rats. (C) 2010 Elsevier Inc. All rights reserved.CAPES Coordenacao de Pessoal de Ensino Superio
Comparison of the Effects of Electrical Field Stimulation and Low-Level Laser Therapy on Bone Loss in Spinal Cord-Injured Rats
Objective: This study investigated the effects of low-level laser therapy (LLLT) and electrical stimulation (ES) on bone loss in spinal cord-injured rats. Materials and Methods: Thirty-seven male Wistar rats were divided into four groups: standard control group (CG); spinal cord-injured control (SC); spinal cord-injured treated with laser (SCL; GaAlAs, 830 nm, CW, 30mW/cm, 250 J/cm(2)); and spinal cord-injured treated with electrical field stimulation (SCE; 1.5 MHz, 1: 4 duty cycles, 30 mW, 20 min). Biomechanical, densitometric, and morphometric analyses were performed. Results: SC rats showed a significant decrease in bone mass, biomechanical properties, and morphometric parameters (versus CG). SCE rats showed significantly higher values of inner diameter and internal and external areas of tibia diaphyses; and the SCL group showed a trend toward the same result (versus SC). No increase was found in either mechanical or densitometric parameters. Conclusion: We conclude that the mentioned treatments were able to initiate a positive bone-tissue response, maybe through stimulation of osteoblasts, which was able to determine the observed morphometric modifications. However, the evoked tissue response could not determine either biomechanical or densitometric modifications
Síntese do material mesoporoso MCM-41 usando esponja de água-doce como fonte de sílica
Fresh water sponge was used as a silica source for the synthesis of MCM-41 via the hydrothermal process. The silica was extracted from the sponge by washing with nitric acid and piranha solution. Synthesis of MCM-41 was performed at 100 °C for 5 days and the procedure was optimized, with modifications made to the leaching temperature of the silica and the synthesis of mesoporous material, which was characterized by XRD, FT-IR, SEM and adsorption of N2. The optimal result was achieved at a temperature of 135 °C for 3 days, showing ordered mesoporous material with a surface area of 1080 m² g-1
Dependência e resposta de mudas de cedro a fungos micorrízicos arbusculares Cedar seedlings dependency and responsiveness to arbuscular mycorrhizal fungi
Os objetivos deste trabalho foram avaliar a resposta de mudas de cedro (Cedrela fissilis Vell.) a espécies de fungos micorrízicos arbusculares (FMA) e determinar o grau de dependência micorrízica dessas mudas. O ensaio foi conduzido em casa de vegetação, em delineamento de blocos inteiramente casualizados, em esquema fatorial 5 (doses de P) x 5 (4 espécies de FMA e testemunha sem inoculação), com seis repetições. Glomus clarum foi a espécie de FMA mais eficiente em promover o crescimento e a nutrição fosfatada de mudas de cedro, principalmente quando a inoculação foi realizada em substrato com P disponível em torno de 12 mg dm-3. A economia de P aplicado equivale a aproximadamente 63%, em relação à testemunha sem inoculação, quando foram buscados 80% do crescimento máximo. Verificou-se elevado grau de dependência micorrízica das mudas de cedro e, portanto, a inoculação de FMA é um procedimento que deve ser considerado na fase de viveiro, para garantir o sucesso do estabelecimento e crescimento em campo dessas mudas.<br>The objectives of this work were to evaluate cedar (Cedrela fissilis Vell.) seedlings responsiveness to arbuscular mycorrhizal fungi (AMF) species and to determine mycorrhizal dependency degree of this seedling. The experiment was carried out at greenhouse, in a complete randomized block design as a factorial set 5 (P doses) x 5 (4 AMF species + noninoculated treatment) with six replications. Glomus clarum was the most efficient AMF species in promoting the growth and P nutrition of cedar seedlings, especially when the inoculation was done in substratum containing P available levels close to 12 mg dm-3. The saving of applied P was approximately 63%, regarding noninoculated treatment when 80% of the maximum growth was estimated. The elevated degree of mycorrhizal dependency of cedar seedlings was verified, so AMF inoculation is a procedure that should be considered in nursery stage, in order to guarantee cedar seedlings successful establishment and growth on field conditions