16 research outputs found

    Hybrid imaging kernel calibration applied on microwave scanner for brain stroke monitoring

    Get PDF
    This paper validates a calibration procedure applied on a microwave imaging (MWI) kernel based on the combination of pre-computed simulated data and available S-parameters measurements. The assessed technique compensates for the image degradation caused by mild and non-modeled features of the imaging device, such as the unavoidable manufacturing discrepancies in the antenna array. The testing considers a synthetically mimicked experimental scenario of a hemorrhagic stroke condition and a realistic scanner prototype. This approach allows a thorough comparative assessment of the calibration effect on the electric field estimation used by the MWI algorithm, hardly achievable with measurements. The results show the capability of the calibration procedure to reduce the retrieved images’ distortions and artifacts compared to the non-calibrated approach, being an essential milestone toward its application in real-life scenarios

    Clues to the Formation of Liller 1 from Modeling Its Complex Star Formation History

    Get PDF
    Liller 1 and Terzan 5 are two massive systems in the Milky Way bulge hosting populations characterized by significantly different ages (Delta t > 7-8 Gyr) and metallicities (Delta[Fe/H] similar to 1 dex). Their origin is still strongly debated in the literature and all formation scenarios proposed so far require some level of fine-tuning. The detailed star formation histories of these systems may represent an important piece of information to assess their origin. Here we present the first attempt to perform such an analysis for Liller 1. The first key result we find is that Liller 1 has been forming stars over its entire lifetime. More specifically, three broad star formation episodes are clearly detected: (1) a dominant one, occurring some 12-13 Gyr ago with a tail extending for up to similar to 3 Gyr; (2) an intermediate burst, between 6 and 9 Gyr ago; and (3) a recent one, occurring between 1 and 3 Gyr ago. The old population contributes to about 70% of the total stellar mass, and the remaining fraction is almost equally split between the intermediate and young populations. If we take these results at face value, they would suggest that this system unlikely formed through the merger between an old globular cluster and a giant molecular cloud, as recently proposed. On the contrary, our findings provide further support to the idea that Liller 1 is the surviving relic of a massive primordial structure that contributed to the Galactic bulge formation, similarly to the giant clumps observed in star-forming high-redshift galaxies

    Internal kinematics and structure of the bulge globular cluster NGC 6569

    Get PDF
    In the context of a project aimed at characterizing the properties of star clusters in the Galactic bulge, here we present the determination of the internal kinematics and structure of the massive globular cluster NGC 6569. The kinematics has been studied by means of an unprecedented spectroscopic dataset acquired in the context of the ESO-VLT Multi-Instrument Kinematic Survey (MIKiS) of Galactic globular clusters, combining the observations from four different spectrographs. We measured the line-of-sight velocity of a sample of almost 1300 stars distributed between ~0.8" and 770" from the cluster center. From a sub-sample of high-quality measures, we determined the velocity dispersion profile of the system over its entire radial extension (from ~ 5" to ~ 200" from the center), finding the characteristic behavior usually observed in globular clusters, with a constant inner plateau and a declining trend at larger radii. The projected density profile of the cluster has been obtained from resolved star counts, by combining high-resolution photometric data in the center, and the Gaia EDR3 catalog radially extended out to ~20' for a proper sampling of the Galactic field background. The two profiles are properly reproduced by the same King model, from which we estimated updated values of the central velocity dispersion, main structural parameters (such as the King concentration, the core, half-mass, and tidal radii), total mass, and relaxation times. Our analysis also reveals a hint of ordered rotation in an intermediate region of the cluster (40"<r<90", corresponding to 2rc<r<4.5rc 2 r_c<r<4.5 r_c), but additional data are required to properly assess this possibility.Comment: Accepted for publication in The Astrophysical Journal; 21 pages, 10 figures, 4 table

    The discovery space of ELT-ANDES. Stars and stellar populations

    Full text link
    The ArmazoNes high Dispersion Echelle Spectrograph (ANDES) is the optical and near-infrared high-resolution echelle spectrograph envisioned for the European Extremely Large Telescope (ELT). We present a selection of science cases, supported by new calculations and simulations, where ANDES could enable major advances in the fields of stars and stellar populations. We focus on three key areas, including the physics of stellar atmospheres, structure, and evolution; stars of the Milky Way, Local Group, and beyond; and the star-planet connection. The key features of ANDES are its wide wavelength coverage at high spectral resolution and its access to the large collecting area of the ELT. These features position ANDES to address the most compelling and potentially transformative science questions in stellar astrophysics of the decades ahead, including questions which cannot be anticipated today.Comment: 46 pages, 8 figures; submitted to Experimental Astronomy on behalf of the ANDES Science Tea

    The Molecular Assembly of Amyloid Aβ Controls Its Neurotoxicity and Binding to Cellular Proteins

    Get PDF
    Accumulation of β-sheet-rich peptide (Aβ) is strongly associated with Alzheimer's disease, characterized by reduction in synapse density, structural alterations of dendritic spines, modification of synaptic protein expression, loss of long-term potentiation and neuronal cell death. Aβ species are potent neurotoxins, however the molecular mechanism responsible for Aβ toxicity is still unknown. Numerous mechanisms of toxicity were proposed, although there is no agreement about their relative importance in disease pathogenesis. Here, the toxicity of Aβ 1–40 and Aβ 1–42 monomers, oligomers or fibrils, was evaluated using the N2a cell line. A structure-function relationship between peptide aggregation state and toxic properties was established. Moreover, we demonstrated that Aβ toxic species cross the plasma membrane, accumulate in cells and bind to a variety of internal proteins, especially on the cytoskeleton and in the endoplasmatic reticulum (ER). Based on these data we suggest that numerous proteins act as Aβ receptors in N2a cells, triggering a multi factorial toxicity

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Real-time 3D microwave tomography of brain stroke status using low-computing demand

    No full text
    This paper approaches the medical problem of the after-onset monitoring of a brain stroke via a real-time linear imaging algorithm and a low-complexity microwave scanner. This procedure allows using low computing requirements for tracking physical pathology changes, such as stroke shape evolution and he partial typology variation of the infarcted zones, both significant medical issues. The system consists of a 22-antenna device, and the imaging algorithm uses a differential single-frequency approach. It exploits a pair of measured scattering matrices taken at two different instants, the Born approximation, and the truncated singular value decomposition, to form in-time 3D tomographic dielectric contrast variation maps in real-time using a stand-alone low-capacity device without needing a graphics processing unit. The results confirm the continuous stroke followup capabilities of the system, with the possibility to track both the shape and type transformations (hemorrhage and ischemia), even in mimicked complex clinical scenarios

    Non-Canonical Roles of Tau and Their Contribution to Synaptic Dysfunction

    No full text
    Tau plays a central role in a group of neurodegenerative disorders collectively named tauopathies. Despite the wide range of diverse symptoms at the onset and during the progression of the pathology, all tauopathies share two common hallmarks, namely the misfolding and aggregation of Tau protein and progressive synaptic dysfunctions. Tau aggregation correlates with cognitive decline and behavioural impairment. The mechanistic link between Tau misfolding and the synaptic dysfunction is still unknown, but this correlation is well established in the human brain and also in tauopathy mouse models. At the onset of the pathology, Tau undergoes post-translational modifications (PTMs) inducing the detachment from the cytoskeleton and its release in the cytoplasm as a soluble monomer. In this condition, the physiological enrichment in the axon is definitely disrupted, resulting in Tau relocalization in the cell soma and in dendrites. Subsequently, Tau aggregates into toxic oligomers and amyloidogenic forms that disrupt synaptic homeostasis and function, resulting in neuronal degeneration. The involvement of Tau in synaptic transmission alteration in tauopathies has been extensively reviewed. Here, we will focus on non-canonical Tau functions mediating synapse dysfunction

    AVI-CH 2022: Workshop on Advanced Visual Interfaces and Interactions in Cultural Heritage

    No full text
    AVI-CH is the 14th workshop in the series of PATCH workshops, since 2007 and the 4th in a row at AVI. It is the meeting place for researchers and practitioners focusing on the application of advanced information and communication technology (ICT) in cultural heritage with a specific focus on user interfaces, visualization and interaction. This year, eight papers were submitted by researchers from Greece, Italy and Israel. All were accepted
    corecore