461 research outputs found

    Gaps present a trade-off between dispersal and establishment that nourishes species diversity

    Get PDF
    We took advantage of two natural experiments to investigate processes that regulate tree recruitment in gaps. In the first, we examined the recruitment of small and large saplings and trees into 31 gaps resulting from treefalls occurring between 1984 and 2015 in the 2.25-ha core area of a 4-ha tree plot at Cocha Cashu in Peru. In the second, we identified the tallest saplings recruiting into 69 gaps created during a violent wind storm in February 2000. In the established tree plot, we were able to compare the composition of saplings in the disturbance zones of gaps prior to, during, and subsequent to the period of gap formation. Recruitment in gaps was compared with that in "nofall" zones, areas within the plot that had not experienced a treefall at least since the early 1980s. Our results confirmed earlier findings that a consistently high proportion (~60%) of established saplings survived gap formation. Light demanding species, as proxied by mortality rates, recruited under all conditions, but preferentially during periods of gap formation, a pattern that was especially strong among gap pioneers. Similar results were noted, separately, for small and large saplings and trees recruiting at >= 10 cm dbh. One hundred percent of previously untagged trees recruiting into gaps in the first post-disturbance census were gap pioneers, suggesting rapid development. This conclusion was strongly supported in a follow-up survey taken of 69 gaps 19 months after they had been synchronously created in a wind storm. Ten species of gap pioneers, eight of which are not normally present in the advance regeneration, had attained heights of 6-10 m in 19 months. The 10 gap pioneers were dispersed, variously, by primates, bats, birds, and wind and reached maximum frequency in different-sized gaps (range 1,000 m(2)). Both gap size and limited dispersal of zoochorous species into gaps serve as filters for establishment, creating a complex mosaic of conditions that enhances species diversity

    Failure Under Stress: The Effect of the Exotic Herbivore \u3cem\u3eAdelges tsugae\u3c/em\u3e on Biomechanics of \u3cem\u3eTsuga canadensis\u3c/em\u3e

    Get PDF
    Background and Aims Exotic herbivores that lack a coevolutionary history with their host plants can benefit from poorly adapted host defences, potentially leading to rapid population growth of the herbivore and severe damage to its plant hosts. The hemlock woolly adelgid (Adelges tsugae) is an exotic hemipteran that feeds on the long-lived conifer eastern hemlock (Tsuga canadensis), causing rapid mortality of infested trees. While the mechanism of this mortality is unknown, evidence indicates that A. tsugae feeding causes a hypersensitive response and alters wood anatomy. This study investigated the effect of A. tsugae feeding on biomechanical properties at different spatial scales: needles, twigs and branches. Methods Uninfested and A. tsugae-infested samples were collected from a common garden experiment as well as from naturally infested urban and rural field sites. Tension and flexure mechanical tests were used to quantify biomechanical properties of the different tissues. In tissues that showed a significant effect of herbivory, the potential contributions of lignin and tissue density on the results were quantified. Key Results Adelges tsugae infestation decreased the abscission strength, but not flexibility, of needles. A. tsugae feeding also decreased mechanical strength and flexibility in currently attacked twigs, but this effect disappeared in older, previously attacked branches. Lignin and twig tissue density contributed to differences in mechanical strength but were not affected by insect treatment. Conclusions Decreased strength and flexibility in twigs, along with decreased needle strength, suggest that infested trees experience resource stress. Altered growth patterns and cell wall chemistry probably contribute to these mechanical effects. Consistent site effects emphasize the role of environmental variation in mechanical traits. The mechanical changes measured here may increase susceptibility to abiotic physical stressors in hemlocks colonized by A. tsugae. Thus, the interaction between herbivore and physical stresses is probably accelerating the decline of eastern hemlock, as HWA continues to expand its range

    Facilitation between invasive herbivores: hemlock woolly adelgid increases gypsy moth preference for and performance on eastern hemlock

    Get PDF
    Interactions between invertebrate herbivores with different feeding modes are common on long‐lived woody plants. In cases where one herbivore facilitates the success of another, the consequences for their shared host plant may be severe. Eastern hemlock (Tsuga canadensis), a canopy‐dominant conifer native to the eastern U.S., is currently threatened with extirpation by the invasive stylet‐feeding hemlock woolly adelgid (Adelges tsugae). The effect of adelgid on invasive hemlock‐feeding folivores remains unknown. This study evaluated the impact of feeding by hemlock woolly adelgid on gypsy moth (Lymantria dispar) larval preference for, and performance on, eastern hemlock. To assess preference, 245 field‐grown hemlocks were surveyed for gypsy moth herbivory damage and laboratory paired‐choice bioassays were conducted. To assess performance, gypsy moth larvae were reared to pupation on adelgid‐infested or uninfested hemlock foliage, and pupal weight, proportional weight gain, and larval period were analysed. Adelgid‐infested hemlocks experienced more gypsy moth herbivory than did uninfested control trees, and laboratory tests confirmed that gypsy moth larvae preferentially feed on adelgid‐infested hemlock foliage. Gypsy moth larvae reared to pupation on adelgid‐infested foliage gained more weight than larvae reared on uninfested control foliage. These results suggest that the synergistic effect of adelgid and gypsy moth poses an additional threat to eastern hemlock that may increase extirpation risk and ecological impact throughout most of its range

    Seasonal changes in eastern hemlock (\u3cem\u3eTsuga canadensis\u3c/em\u3e) foliar chemistry

    Get PDF
    Eastern hemlock (Tsuga canadensis (L.) Carriére; hemlock) is an eastern North American conifer threatened by the invasive hemlock woolly adelgid (Adelges tsugae Annand). Changes in foliar terpenes and phenolics were evaluated in new (current year growth) and mature (1-year old growth) hemlock needles during the growing season and into plant dormancy. From April through September, foliar concentrations of non-volatile soluble phenolics, condensed tannins, lignin, mono- and sesquiterpenes α-pinene, camphene, isobornyl acetate, and diterpene resin were quantified. After September, additional analyses of metabolites that continued to differ significantly in new versus mature foliage were carried out. Total soluble phenolic concentration and condensed tannin concentration in new foliage remained low relative to mature foliage throughout the growing season and converged in December. Lignin concentration in new foliage converged with that of mature foliage by July. Concentrations of α-pinene, camphene, isobornyl acetate, and diterpene resin in new foliage converged with mature foliage within one month of budbreak. The convergence of terpene concentrations in new and mature foliage suggests that these metabolites may play a role in herbivore defense during the peak growing season. Conversely, soluble phenolics, including condensed tannins, may defend foliage from herbivory outside of the spring growth period

    Effect of breeding performance on the distribution and activity budgets of a predominantly resident population of black‐browed albatrosses

    Get PDF
    Funding Information Fundação para Ciencia e a Tecnologica (FCT Portugal). Grant Numbers: IF/00502/2013/CP1186/CT0003, UID/AMB/50017/2019, MAREUID/MAR/04292/2019 Marie Sklodowska‐Curie grant. Grant Number: 753420 Agreement on the Conservation of Albatrosses and Petrels. Grant Number: 2013-14Peer reviewedPublisher PD

    Temporal and Individual Variation in Offspring Provisioning by Tree Swallows: A New Method of Automated Nest Attendance Monitoring

    Get PDF
    Studies of the ecology and evolution of avian nesting behavior have been limited by the difficulty and expense of sampling nest attendance behavior across entire days or throughout a substantial portion of the nestling period. Direct observation of nesting birds using human observers and most automated devices requires sub-sampling of the nestling period, which does not allow for the quantification of the duration of chick-feeding by parents within a day, and may also inadequately capture temporal variation in the rate at which chicks are fed. Here I describe an inexpensive device, the Automated Perch Recorder (APR) system, which collects accurate, long-term data on hourly rates of nest visitation, the duration of a pair's workday, and the total number of visits the pair makes to their nest across the entire period for which it is deployed. I also describe methods for verifying the accuracy of the system in the field, and several examples of how these data can be used to explore the causes of variation in and tradeoffs between the rate at which birds feed their chicks and the total length of time birds spend feeding chicks in a day

    Human biogeography and faunal exploitation in Diamante River basin, central western Argentina

    Get PDF
    A biogeographic model used to describe human peopling of southern Mendoza, central western Argentina, proposed an intensification process activated by an increase in population growth rate during the Late Holocene. During this process, high-ranked resources at the surroundings of residential camps were depleted, and hunter–gatherers broadened their diet by incorporating a larger number of low-ranked prey and domesticated plant resources. In this paper, we evaluate an alternative hypothesis, focusing on zooarchaeological data from the Diamante River basin. The results show that faunal resource intensification does not appear to have occurred in the Diamante River basin during the Late Holocene. Faunal consumption in Diamante River basin mainly reflects the local fauna in each ecological zone. The data do not show a lack of higher ranked resources. We suggest it is more likely that the demographic increase was not significant enough to cause an impact on the faunal resources. The archaeological evidence should be improved and analysed in smaller scales to continue with the intensification debate.Fil: Otaola, Clara. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Giardina, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Franchetti, Fernando Ricardo. University of Pittsburgh at Johnstown; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Testing the optimal defence hypothesis for two indirect defences: extrafloral nectar and volatile organic compounds

    Get PDF
    Many plants respond to herbivory with an increased production of extrafloral nectar (EFN) and/or volatile organic compounds (VOCs) to attract predatory arthropods as an indirect defensive strategy. In this study, we tested whether these two indirect defences fit the optimal defence hypothesis (ODH), which predicts the within-plant allocation of anti-herbivore defences according to trade-offs between growth and defence. Using jasmonic acid-induced plants of Phaseolus lunatus and Ricinus communis, we tested whether the within-plant distribution pattern of these two indirect defences reflects the fitness value of the respective plant parts. Furthermore, we quantified photosynthetic rates and followed the within-plant transport of assimilates with 13C labelling experiments. EFN secretion and VOC emission were highest in younger leaves. Moreover, the photosynthetic rate increased with leaf age, and pulse-labelling experiments suggested transport of carbon to younger leaves. Our results demonstrate that the ODH can explain the within-plant allocation pattern of both indirect defences studied
    corecore