66 research outputs found

    Substitute or complement? Assessing renewable and nonrenewable energy in OECD countries

    Get PDF
    The elasticity of interfuel substitution between renewable and nonrenewable energy is key to establishing effective climate change policy. This is the first study to estimate the elasticity of substitution between different fossil fuels and renewable resources. We used 12 manufacturing industry-level datasets for the OECD countries from 1995 to 2009. We found a complementary relationship from nonrenewable energy to renewable energy in eight industries, whereas a substitute relationship was maintained for four industries. In particular, the food and pulp industries had a strong complementary relationship

    Environmental and resource burdens associated with world biofuel production out to 2050:footprint components from carbon emissions and land use to waste arisings and water consumption

    Get PDF
    Environmental or ‘ecological’ footprints have been widely used in recent years as indicators of resource consumption and waste absorption presented in terms of biologically productive land area [in global hectares (gha)] required per capita with prevailing technology. In contrast, ‘carbon footprints’ are the amount of carbon (or carbon dioxide equivalent) emissions for such activities in units of mass or weight (like kilograms per functional unit), but can be translated into a component of the environmental footprint (on a gha basis). The carbon and environmental footprints associated with the world production of liquid biofuels have been computed for the period 2010–2050. Estimates of future global biofuel production were adopted from the 2011 International Energy Agency (IEA) ‘technology roadmap’ for transport biofuels. This suggests that, although first generation biofuels will dominate the market up to 2020, advanced or second generation biofuels might constitute some 75% of biofuel production by 2050. The overall environmental footprint was estimated to be 0.29 billion (bn) gha in 2010 and is likely to grow to around 2.57 bn gha by 2050. It was then disaggregated into various components: bioproductive land, built land, carbon emissions, embodied energy, materials and waste, transport, and water consumption. This component‐based approach has enabled the examination of the Manufactured and Natural Capital elements of the ‘four capitals’ model of sustainability quite broadly, along with specific issues (such as the linkages associated with the so‐called energy–land–water nexus). Bioproductive land use was found to exhibit the largest footprint component (a 48% share in 2050), followed by the carbon footprint (23%), embodied energy (16%), and then the water footprint (9%). Footprint components related to built land, transport and waste arisings were all found to account for an insignificant proportion to the overall environmental footprint, together amounting to only about 2

    Governing effective and legitimate smart grid developments

    Get PDF
    Smart grids which use Information and Communication Technologies to augment energy network management have been developed in several locations including London and Stockholm. Common rationales for smart grids include: de-carbonising energy supply, maintaining security of supply and promoting affordability. However, beyond these general abstractions, smart grids seem to exhibit considerable diversity in terms of their characteristics and rationales for development. Thus, while the term smart grid may imply abstract notions of what smart grids are and might do, they are developed in response to local contingencies and diverse. In this paper we therefore explore the governance processes through which smart grids are constructed. The paper suggests that standardising smart grids through definitions and best practices that fix both problems and solutions should be avoided. Rather governance processes should be promoted in which local contingencies can be articulated and more legitimate smart grids developed in response to these
    corecore