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Abstract 

Elasticity of interfuel substitution between renewable and non-renewable energy is a key to 

establish effective climate change policy.This is the first study estimating the elasticity of 

substitution between different fossil fuels and renewable resources. We use twelve 

manufacturing industry level data for the OECD countries over 1995 to 2009. We find 

complementally relationship from non-renewable energy to renewable energy in eight 

industries while substitute relationship holds for four industries. In particular, food and pulp 

industries have strong complementally relationship. 

 

Keywords: Fossil fuels, Renewable energy, Morishima elasticity of substitution, Directional 

distance function, shadow price of CO2, OECD countries 

JEL Classification: L60, Q20, Q42 

1 
 



1.  Introduction 
Climate change threatens future well-being and stability. Large cuts in the carbon emissions 

are required to mitigate negative effects of climate change. It necessitates a transformation of 

world economies from fossil fuel based to de-carbonized economies, and technical change 

plays a major role in de-carbonizing the production, investment, and consumption activities 

(Kumar and Yalew, 2012; Managi et al., 2012). Therefore, the substitution of renewable 

resources for fossil fuels is at the heart of climate change mitigation policy.  

 Acemoglu et al. (2012) analyze technical change in the growth model with 

environmental and resource constraints to discuss the substitution pass from fossil fuels (dirty 

inputs) to renewable (clean inputs) resources. The elasticity of substitution is a key in 

understanding the evolution of technical change between fossil fuels and renewable resources. 

Because of the lack of elasticity estimates in the literature, they assume two different values 

of elasticity where both of them are high (Acemoglu et al., 2012). As a future research, they 

suggest to estimate the relevant elasticity of substitution between fossil fuels and renewable 

using industry-level data. We contribute to this task by estimating the Morishima elasticity of 

substitution (MES) between different fossil fuels and renewable resources using industry 

level data for the OECD countries. Market demand of renewable resources has been growing 

over years. Total renewables supply grew by 2.4% per annum between 1971 and 2008 while 

1.3% per annum for total primary energy supply in OECD countries (OECD, 2010). Behind 

this background, there are three reasons which are increasing of fossil fuel price, cost of 

renewable energy decrease due to technological progress, and policy target to reduce GHG 

emissions. According to Apergis and Payne (2014), real coal prices, and real oil prices are 

each positive and statistically significant to renewable energy consumption. In 2008, 

European commission set the 20-20-20 target which is targeted to reduce 20% of GHG 

emission, decrease 20% of primary energy use, and increase 20% of renewable energy use. 

 Inter-fuel substitution is seen as a promising venue in meeting the growing challenge 

of climate change and industries have substituted fuels considering their constraints. There 

have been a large number of empirical studies to quantify the potential for switching between 

electricity and other fuels focusing on fossil fuels (Halvorsen, 1977; Jones, 1995; Bjørner and 

Jensen, 2002; Stern, 2012). They found that electricity is generally a weak substitute for other 

energy inputs (such as coal, oil, and gas). But none of these studies estimate the 

substitutability between conventional fossil fuels (including electricity) and renewable 

resources. 
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 Steinbuks (2012) suggests the use of industry level data to avoid measurement error 

associated with aggregation over industries. It is clear that the required investment and know-

how for switching energy vary by industries because the reasons of energy use are different 

(Fujii and Managi, 2013) (e.g. intermediate materials or combustion; see Appendix 1 for 

detail). That is elasticity is different over industries. Additionally, relative price between 

renewable and non-renewable energy is different among industries and change over time due 

to technological progress that needs to be controlled (Kuper and van Soest, 2003). 

 We also test the effect of Kyoto protocol on the estimation of shadow price of carbon 

dioxide (CO2). Kyoto protocol is the first market mechanism and international agreement to 

reduce greenhouse gas emissions. Industrial sector might change their energy use strategy 

after Kyoto protocol adopted or enforced. Another objective of this study is to understand 

how each manufacturing sector changes the energy use after Kyoto protocol, focusing on the 

inter-fuel elasticity, shadow price of CO2, and productive efficiency. 

Our results show there is complementally relationship between renewable and non-

renewable energy. Some of the manufacturing sectors might have complementally 

relationship between renewable and non-renewable energy because of their industrial 

characteristics (see Karltorp and Sandén (2012) for technological reason). Thus, we clarify 

that elasticity by industries and also find shadow price increases after the Kyoto protocol. 

 The rest of the paper is organized as follows: Section 2 introduces previous studies 

about inter-fuel energy substitution and methodological development of elasticity index. 

Section 3 describes our methodology. Section 4 presents the data used in the study. Results 

on the basis of the parameters of directional output distance function are discussed in Section 

5. The paper concludes in Section 6. 

 

2.  Background 
2-1. Interfuel energy substitute 

 Interfuel substitution and the substitutability of energy and other factors of production 

determine the effects of output growth and fuel prices on the demand for energy and 

indirectly to the CO2 emissions. They have been of interest in a large number of energy 

demand studies since the early 1970s (see Stern, 2012 for extensive review). Most of them 

use a flexible functional form for the underlying aggregator function (e.g., Pindyck 1979). 

This approach of energy demand involves specifying a twice differentiable translog 
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functional form of cost function, and applying Shephard’s lemma to derive the resulting cost 

share (or input-output) equations.  

 Using these equations with relevant data, they estimate the parameters of the demand 

for fuels. These include the own- and cross-price elasticities as well as the elasticities of 

substitution. Although the role of energy in the structure of production has been the focus of a 

large number of empirical studies, the evidence on inter-factor and inter-fuel substitutability 

is mixed. The early studies by Berndt and Wood (1975) and Magnus (1979) all use time 

series data for a single country and found substitutability between energy and labor, but 

complementarity between energy and capital. Also, Fuss (1977) find oil, gas and coal to be 

substitutes using Canadian data, but found no substitutability between each of these energy 

inputs and electricity. Moreover, Pindyck (1979) find energy and labor to be substitutes and 

also energy and capital to be substitutes, and not complements as earlier studies had indicated. 

 Some recent studies focus on the specific industries in one country (Fujii et al., 2010; 

Assaf et al., 2011; Barros et al., 2012). Floros and Vlachou (2005) analyze interfuel 

substitution and effect of carbon tax using manufacturing sectors data in Greek. They find 

that electricity and diesel, and electricity and mazout are substitutes, while diesel and mazout 

are complement in most manufacturing sectors. Bousquet and Ladoux (2006) estimate 

substitution of fossil fuels in France. They conclude that increasing the price of energy 

possibly modifies the number of energy used by the firm. 

 Many of the literature ignore the theoretical regularity conditions of microeconomic 

theory (see Serletis et al. 2009). Serletis et al. (2009) estimate the inter-fuel elasticity of 

substitution for a set of developed and developing countries using the time-series of 1980 to 

2006. They estimate the elasticities not only at the aggregate level but at sectoral level also. 

They apply the normalized quadratic cost function and estimate the corresponding input-

output equations subject to the theoretical regularity conditions of Diewert and Wales (1987). 

 

2-2. Elasticity of substitution and productive inefficiency 

 Measurement of inter-fuel substitution elasticity is important for the energy and 

climate change mitigation policy. In the literature two approaches are used for measuring the 

inter-fuel partial substitution elasticity between two variables1. Balckorby and Russell (1989) 

1Most of the conventional studies employ the Allen elasticity of substitution to measure substitution 
behavior and structural instability in a variety of contexts. In the context of two inputs, the 
relationship is unambiguous and the inputs must be substitutes. However, when there are more than 
two inputs, the relationship becomes complex and depends on the direction taken toward the point of 
approximation. 
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finds that the Allen elasticity of substitution is uninformative in the case of more than two 

inputs and suggest the use of MES. MES examines how changes in the price ratio of inputs 

affect the quantity ratio of inputs. Inputs are Morishima substitutes (complements) if an 

increase in the price ratio of inputs causes quantity ratio to increase (decrease). In this study 

we examine MES between coal, electricity, natural gas, oil and oil products, and renewable 

resources used in the various industries in OECD countries. 

 To estimate MES between different fuels and to obtain shadow prices of CO2 

emissions, we model a production process that consider both the production of good output 

(value added) and CO2 emissions. We apply the directional output distance function of a 

multi-output production frontier models (Chambers et al., 1996). In production theory, the 

directional output distance function is dual to the revenue function (Managi, 2010). One can 

exploit that duality to derive shadow price estimates for CO2 emissions. Directional distance 

function can be estimated either parametrically or non-parametrically. Here, we apply 

parametric estimation2. 

 Parametric estimation of directional output distance function can be provided both 

econometrically or deterministically. Econometric estimation has the advantages in providing 

space for statistical noise and testing the various hypotheses over the deterministic estimation. 

Parameterization must satisfy the axiomatic properties of the directional output distance 

function and enable the computation of marginal effects. This limits the set of possible 

functional forms considerably. The functional form captures the economically relevant 

information that exhaustively characterizes the behavior of economic agents. The flexible 

functional form also needs to provide a second order differential approximation (Chambers, 

1988). 

 Recently, Färe et al. (2010) use Monte Carlo simulations to demonstrate the apparent 

greater ability in practice of the quadratic directional output distance function, compared to 

the translog (also flexible and can be likewise restricted to satisfy homogeneity) Shephard 

output distance function to characterize the output set. Their results suggest that the output set 

is better parameterized via a quadratic output directional distance function than with a 

translog Shephard output distance function. Similarly Färe et al. (2008) find, while examining 

2Nonparametric estimation constructs the feasible output set as a convex, linear combination of all 
input and output observations. The model satisfies the assumptions made to characterize the 
production structure. It also assesses performance by measuring each observation’s directional 
distance to the corresponding output frontier, as a piece-wise linear combination of the outer most 
output observations. Nonparametric estimation does not, however, generate the smooth, 
differentiable output frontier required to solve for unique shadow values, and does not offer a 
tractable way to evaluate the economic tradeoffs facing each of the observations. 
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the regularity conditions, the quadratic function has fewer monotonicity violations than the 

translog function, so the quadratic function performs better than the translog function based 

on monotonicity and curvature violations. Therefore we use quadratic form and estimate it as 

a frontier function. 

 

3. Model 
3.1 The directional output distance function  

To measure inter-fuel MES we use a directional output distance function. A directional 

output distance function seeks to expand the vector of marketable outputs such as value 

added, y∈ℜM
+, and reduce CO2 emissions, b∈ℜN

+, by employing a vector of inputs (such as 

labor, capital, materials and various forms of energy use), x∈ℜl
+. The function inherits its 

properties from the production technology, P(x). The production technology is defined as: 

 

( ) {( , , ) :  can produce ( , )}P x x y b x y b= .   (1) 

 

The production technology may be modeled in alternative ways. The outputs are 

strongly or freely disposable if (y, b)∈ P(x) and (y’, b’)≤(y, b) ⇒ (y’, b’) ∈ P(x). This implies 

that if an observed output vector is feasible, then any output vector smaller than that is also 

feasible. This assumption excludes production processes that generate pollutants that are 

costly to dispose of. Concerns for CO2 emissions reduction require that these should not be 

considered freely disposable. In such cases, CO2 emissions are considered weakly disposable: 

(y, b)∈ P(x) and 0 ≤θ ≤ 1 ⇒ (θ y, θ b) ∈ P(x). This implies that CO2 emissions disposal is 

costly and that abatement activities would typically divert resources away from the 

production of marketable outputs, leading to lower marketable outputs for given inputs or the 

employment of more resources for a given level of marketable output. Marketable outputs are 

assumed to be null-joint with the pollutants. 3  Formally, the directional output distance 

function is defined as: 

 

( ) ( ) ( ){ }, , ; max : ,y bD x y b g y g b g P x
β

β β β= + ⋅ − ⋅ ∈ . (2) 

 

3 Null-jointness implies that a firm cannot produce marketable outputs in the absence of pollutants, 

i.e., 0 then 0 and ),( if ==∈ ybP(x)by . 
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This function requires a simultaneous reduction of CO2 emissions and expansion of 

marketable outputs. The computed value of β  (i.e., *β ) provides the maximum expansion 

of marketable outputs and reduction of CO2 emissions if a firm has to operate efficiently 

given the directional vector g. The vector ),( by ggg −=  specifies the direction in which an 

output vector ( )(),( xPby ∈ ) is scaled, so as to reach the boundary of the output set at the 

point )(),( xPgbgy by ∈⋅−⋅+ ∗∗ ββ . This is accomplished by expanding marketable outputs 

and reducing CO2 emissions, where );,,( gbyxD=∗β .  

The directional output distance function derives its properties from the output 

possibility set, P(x) (see Färe et al., 2005).4 These properties include monotonicity conditions 

for marketable outputs and pollutants, and, from its definition, a translation property that is 

the additive counterpart to the homogeneity property of the Shephard distance functions. The 

translation property implies that: 

 

 ),;,,(),;,,( byby ggbyxDggbyxD −=+−−+ ααα .    (3) 

 

 Moreover, the advantage of a directional output distance function is that it allows one 

to consider disproportional changes in outputs, and makes it possible to expand one output 

while reducing another. The distance function takes the value of zero for technically efficient 

output vectors on the frontier, whereas positive values imply inefficient output vectors below 

the frontier. The higher the value, the more inefficient is the output vector. 

 

3.2 The Morishima elasticity of substitution (MES) 

A directional output distance function can be used to measure the interaction between 

different outputs, as it completely describes the production technology, including curvature. 

The curvature measures the ease with which marketable outputs can be substituted with 

pollutants, and the ease with which pollutants are substituted for one another in the 

production process. The curvature can be quantified using the concept of MES, which is the 

ratio of relative change in the shadow prices of marketable output and pollution to the relative 

change in pollution intensity (i.e., the ratio of bad output to good output). Following 

Blackorby and Russell (1989), the indirect MES between outputs may be defined as: 

 

4 For the properties of directional output distance functions, see Färe et al. (2005). 
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where p stand for the prices of energy inputs. In terms of directional output distance function, 

the MES following Färe et al. (2005) between different fuels can be specified as: 
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Where x* are the frontier values of energy inputs. The sign and magnitude of Mij is of 

particular interest. It reveals the ease of substitution or complementarity between two energy 

inputs. Positive signs of MES imply that energy inputs are substitutes for one another, i.e., the 

reduction in the relative shadow price ratio of two energy inputs due to a reduction in the 

relative intensities of energy inputs. But a negative sign implies that the two fuels are 

complements to one another, i.e., reductions in one fuel lead to reductions in the other fuel. 

Moreover, the MES are not symmetric, i.e., jiij MM ≠ . This is as it should be and allows for 

asymmetry in the substitutability of different inputs.5 

 

3.3 Marginal abatement costs of CO2 

The output distance function projects the observed output vector onto the boundary of the 

output set by increasing all outputs proportionally including pollutants. However, in case of a 

directional output distance function, it is possible to project to the frontier in a direction that 

decreases pollutants and increases marketable output. Färe et al. (2005) estimated the 

marginal abatement cost for SO2 emissions using a directional output distance function. 

Murty et al. (2007) and Kumar and Managi (2011) estimated the marginal abatement cost 

functions for air and water pollutants, respectively. The derivation of marginal abatement 

5The MES measures the effect of change in the price of one output to the output ratio of the same 
output and one other. The MES has the special feature of being asymmetric that is Mij≠Mji, unless the 
directional distance function is a member of the CES-Cobb-Douglas family. Asymmetry implies that 
the MES evaluates the substitutability with respect either the one or the other price. When the number 
of outputs exceeds two, any substitution elasticity is partial. An equal percentage change of the one or 
the other output price incurs different changes to the optimal output ratio, and therefore the 
substitution elasticity is inherently asymmetric (Blackbory and Russel, 1989). 
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costs using a distance function requires the assumption that one observed output price is its 

shadow price. Let y1 denote the marketable output, and assume that the observed marketable 

output price equals its absolute shadow price ( so rr 11 = ). Färe et al. (2005) have shown that the 

marginal abatement cost for pollutant, bi (i = 2,..., N) can be derived as, 

 

 .,....,3,2,
/
/

1 Ni
yD
bDrr ios

i =
∂∂
∂∂

=     (6) 

 

 In our case there is a single bad output, CO2 emissions. Firms can follow different 

approaches to reduce the CO2 emissions, i.e., they can reduce the value added produced by 

the firms or increase the production efficiency of fossil fuels consumption or switch from the 

use of fossil fuels to renewable or use a mix of these different options. Following either of 

these options or a mix of options involves costs for the firms. Therefore, the shadow price 

derived using equation (7) can be interpreted as the cost of abatement of CO2 emissions.  

 

3.4. The empirical model 

The directional output distance function is parameterized using an (additive) quadratic 

flexible functional form following Färe et al. (2005). The capital-labour-energy (KLE) 

production function specification is utilized for this study. Capital, labour and energy are 

taken as three inputs. Output is accordingly defined as total value of output minus the value 

of materials. This specification is based on the assumption that in the gross output production 

function, materials input is separable from capital, labour and energy.6 For studying the role 

energy input in the production process in manufacturing industries, particularly the issues of 

energy substitution by other inputs, the KLE production function specification is arguably 

better than the KLEM (capital, labour, energy and materials) specification. It may be 

contended in this context that economic output is created by capital, labour and energy. 

Materials used are a passive partner in the production process and do not contribute to value 

addition which is the essence of economic output (Lindenberger and Kummel, 2002). It may 

be added that a number of earlier studies have used the KLE specification. These include 

6 For a discussion on separability, see Berndt and Christensen (1973). See also, Pindyck (1979) and 
Pyo and Ha (2007). 
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Kemfert and Welscth (2000) and Klacek et al. (2007). Also mentionable here is the study 

undertaken by Pindyck (1979) who assumed that labour, capital and energy are as a group 

weakly separable from materials input. 

In our case, the particular form is expressed as follows, with one marketable net 

output (y1), CO2 emissions, two non-energy inputs (number of employees= x1, and capital 

stock= x2) and five energy inputs (coal = x3, electricity = x4, natural gas = x5, oil = x6 and 

renewable = x7) : 

 

CItbtbytybytx

bxyxxxtbyxgbyxD
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(7) 

with 

𝛽𝛽𝑖𝑖𝑖𝑖 = 𝛽𝛽𝑗𝑗𝑗𝑗 ,𝛼𝛼12 = 𝛼𝛼21,𝛼𝛼1 − 𝛼𝛼2 = −1,𝛼𝛼11 = 𝛼𝛼22 = 𝛼𝛼12, 𝛾𝛾1𝑖𝑖 = 𝛾𝛾2𝑗𝑗 

 

 Those constraints follow from the translation property, and )1,1( −=g , where 1 refers 

to marketable output and –1 refers to CO2 emissions direction vector. Furthermore, t is time 

trend, and I are industry dummies and C are countries dummies. Time trend and its square 

capture neutral technological change, and its interaction terms with inputs and outputs 

measures embodied technological change. Industry and country dummies account for 

industry and country heterogeneity respectively.  

The function in equation (7) can be estimated using stochastic techniques.  Following 

Färe et al. (2005), the stochastic specification of directional distance function takes the form: 

 

ε+−= ),1,1;,,(0 tbyxD     (8) 

 

where µε −= v with ),0(~ 2
vNv σ and µ  (one-sided error term) is assumed to be 

exponentially distributed. 

 To estimate (8) we utilise the translation property of the directional output distance 

function. As in Färe et al. (2005), we choose the directional vector g = (1,-1), where 1 refers 

to gy and -1 refers to –gb, (see Figure 1). This choice of direction is consistent with revenue 

maximization hypothesis. The translation property implies that: 
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),1,1;,,(),,1,1;,( tbyxDtbyD −=+−−+ ααα    (9) 

 

By substituting ααα +−+− ),1,1;,( tybD for ),1,1;,,( tybxD − in (8) and taking α to 

the left hand side, we obtain: 

 

εααα +−+−=− ),1,1;,( tybD      (10) 

 

where ),1,1;,( tybD −+− αα is the quadratic form given by (4) with α added to y  and 

subtracted from b. Thus one is able to get variation on the left-hand side by choosing an α  

that is specific to each industry. In our case it is CO2 emissions.7 

 

<Figure 1 about here> 

 

 The parameters of the quadratic distance function, as specified in equation (9), is 

estimated using maximum likelihood (ML) methods. Moreover, Greene (2000) shows that 

the gamma/exponential model has the virtue of providing a richer and more flexible 

parameterisation of the inefficiency distribution in the stochastic frontier model. 

Gamma/exponential specification enjoys essentially the same properties as normal/half-

normal model with the additional advantage of the flexibility of a two-parameter distribution. 

The primal advantage is that it does not require that the firm-specific inefficiency measures 

be predominately near zero (Greene, 1990). The present study adopts ML estimation 

approach and assumes exponential distribution for one-sided error term. 

 To estimate the directional distance function, we divide each input and output by its 

industry specific mean value following Färe et al. (2005). To invoke the translation property 

for estimating the directional output distance function, we choose α for each observation 

equal to the industry specific index value of the CO2 emissions.8 Since the dataset covers 16 

countries and 12 industries, we use country and industry dummies in the estimation of the 

directional distance function to account for country and industry specific effects in the pooled 

sample of 2,800 observations.  

7The results were not affected by the choice of α. The parameters obtained alternatively with the other 
inputs as α showed little difference.  
8The index value of the value added for an observation is its value added normalized by the industry 

specific mean value added. 
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4. Data 

We use 16 OECD countries and 12 industries dataset from 1995 to 2009 (see Appendix 2)9. 

Financial data, which are value added, number of employees, and real fixed capital stock data 

were obtained from EU-KLEMS 10 . EU-KLEMS uses perpetual inventory methods for 

measuring the capital stock. For the aggregation over the different asset classes EU-KLEMS 

assumes that aggregate capital services are a translog function of the services of individual 

assets and the flow of capital services for each asset class is proportional to its stock. This 

implies that the fixed capital stock is a translog quantity index of individual assets in a 

particular industry (Timmer et al., 2007). All financial data were deflated to 2005 prices. 

 The sector-level CO2 emissions and energy consumption data were obtained from 

three databases published by the International Energy Agency (IEA): (1) CO2 Emissions from 

Fuel Combustion 2011 edition, (2) Energy Balances of OECD countries 2011 edition, and (3) 

Energy Statistics of OECD countries 2011 edition. The CO2 emissions data for coal, oil, and 

natural gas were obtained directly from the CO2 Emissions from Fuel Combustion database. 

However, this database does not include electricity-derived CO2 emissions; therefore, we 

estimated electricity-derived CO2 emissions as the sectoral electricity consumption amount 

(kWh) multiplied by the CO2 coefficient (ton-CO2/kWh) for each country11. 

 To understand inter-fuel substitution among the non-renewable energy use, we 

categorized energy data into five groups: coal, oil, natural gas, electricity, and renewable 

energy following the definition given by IEA (see Appendix3). Renewable energy include 

biodiesels, biogases, bio-gasoline, geothermal, hydro, municipal waste (renewable), other 

liquid biofuels, primary solid biofuels, solar photovoltaic, solar thermal, tide, wave and ocean, 

and wind. 

 Table 1 shows that mean value of each data by industries. From Table 1, CO2 

emission is high in electricity, chemical and metal industries. Electricity, metal and mineral 

industries have high carbon intensity (sale per CO2 emission), while construction and 

transportation equipment industries have low carbon intensity. This is because main energy 

9Chemical industry includes coal chemical and petro chemical industries. Non-metallic minerals 
industry includes cement industry and ceramic industry. 

10  The EU-KLEMS is financial database published by the Groningen Growth and Development 
Centre. EU KLEMS stands for EU level analysis of capital, labour, energy, materials and service 
inputs (http://www.euklems.net/). 

11Because we have difficulty to distinguish the electric power production source by type of industry, 
we apply the each country’s overall average CO2 coefficient score to estimate electricity-derived 
CO2 emissions from industrial sectors. CO2 coefficient depends on the power generation technology 
and portfolio of electricity power generation (see Appendix 3). 
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sources for production are different among industries (see Appendix 1). For example, Metal 

industry uses coal both as a fuel and for oxidation-reduction reactions in shaft furnaces. In 

this case, without technological innovation of the intermediate material technology, it is 

difficult to reduce coal consumption while maintaining the same level of steel production. 

Thus, coal energy has large share in total energy use in Metal industry (see Table 1). 

 

<Table 1 about here> 

 

Meanwhile, electricity, food, pulp, and wood industries have large share of renewable 

energy use comparing with other industries. Renewable energy of electricity sector comes 

from hydro and geothermal. Other three industrial sectors use renewable energy comes from 

primary solid biofuel 12  which is generated by plant and wood (see Appendix 4). Thus, 

manufacturing sectors which use wood and plant as intermediate material have advantage to 

correct materials of biofuels which is generated by production process. 

 

5. Results 
5.1. Technical inefficiency and potential improvement 

The estimated parameters for the directional output distance function are presented in Table 2. 

We estimate two specification of the model; one using two energy inputs namely, renewable 

and non-renewable. Recall that non-renewables is the sum total of coal, electricity, natural 

gas, crude oil, oil products and heat energy use. The other specification of the model includes 

five separated energy variables in the estimation of directional distance function namely, coal, 

electricity, natural gas, oil and oil products, and renewable energy sources. 

 

<Table 2 about here> 

 

 We find that the ML estimation parameters are statistically significant. Most of the 

first-order parameters have the expected signs and are statistically significant. Looking at the 

second-order parameters, it appears that they reveal interesting results. These, however, 

require a more detailed analysis to understand their ultimate influence. Thus, using the 

12According to IEA (2011), primary solid biofuels are defined as any plant matter used directly as fuel 
or converted into other forms before combustion.This covers a multitude of woody materials 
generated by industrial process or provided directly by forestry and agriculture (firewood, wood 
chips, bark, sawdust, shavings, chips, sulphite lyes also known as black liquor, animal 
materials/wastes and other solid biofuels).  
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estimated coefficients, we are able to verify that the resulting distance functions satisfy 

regularity conditions (monotonicity and concavity conditions) for average values. For the 

directional output distance function to be well behaved, it needs to be non-negative and the 

constraints of monotonicity13, symmetry, and the translation property need to hold. In a 

stochastic estimation of the distance functions, translation and symmetry properties are 

imposed, and monotonicity is tested for afterwards. We find that the monotonicity condition 

with respect to value added is satisfied by most of the observations. With respect to CO2 

emissions all observations satisfy the monotonicity condition. Since we have used quadratic 

specification of directional output distance function implying non-homogeneity of the 

distance function. Chow test statistics of estimated parameters show that none of the 

industries are operating under the constant returns to scale.14  

 Note that in both of the specification while estimating the directional output distance 

function we have included country and industry specific dummies to capture the country and 

industry specific heterogeneities. We find that industry and country specific dummies are 

statistically significant in both the specifications. Out of 11 industry specific dummies 8 and 

6 are statistically significant in specification 1 and 2 respectively. Similarly, we observe that 

in first specification out of 15 country-specific dummies 10 are statistically significant and in 

the second specification all the country-specific dummies are statistically different from zero 

(appendix 5). The statistically significance of country-specific dummies reflects the 

heterogeneity regarding institutional arrangements/environmental regulation framework 

observed among the OECD countries. For example, the United States has not rectified the 

Kyoto Protocol and the European Union countries have implemented the Emission Trading 

System (ETS). Such heterogeneity in institutional arrangements may have impact on 

environmental technological innovations and adoptions and on the substitution possibilities 

between non-renewable and renewable energy sources. 

  The parameters associated with the time trend variable are of specific interest. 

Negative parameters indicate positive changes in the technology, and a positive parameter 

indicates technological regression. We find presence of neutral and embodied technological 

change as the coefficients of time and its interaction terms with outputs and inputs are 

statistically significant. In both of the specification we find presence of neutral technological 

progress as the first order coefficient of neutral technological progress is negative, but the 

13(i) ,0);,,( ≤gbyxDy  (ii) ,0);,,( ≥gbyxDb  (iii) ,0);,,( ≤gbyxDyy  (iv) .0);,,( ≤gbyxDby  
14 In the first specification the F statistics is 334.86 and in the second specification its value is 251.53.   
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second order coefficient is positive implying that though there is neutral technological 

progress that increases good output and reduces carbon emissions but further technological 

progress requires more efforts. The coefficients of interaction terms of time and inputs 

variables reflect the presence of embodied technological progress.  Application of the 

econometric approach for estimating parameters allows us to test whether the distribution of 

the inefficiency term is significantly different from zero. The log-likelihood ratio test helps 

reject the null hypothesis of zero inefficiency, i.e., the energy intensive industries in the 

OECD countries are not operating at the frontier P(x), on average. The inefficiency estimates 

of )( εµE  (i.e., the value of the directional distance function) are obtained for each 

observation. 

Table 3 shows industry-specific average estimates of technical inefficiency. For a 

representative energy intensive industry in the OECD countries and using the overall sample 

mean of inputs to produce the sample mean of outputs, the estimated value of the directional 

output distance function is 0.11 for specification 1 and 0.16 for specification 2. We find that 

the mining industry is the most inefficient, chemical and food industries are the most efficient 

in specification 1. In specification 2, construction industry is the most inefficient, and pulp 

industry is the most efficient of the model, industry in OECD countries. The reason that pulp 

industry is evaluated as efficient is that technological progress of biofuel use. The main 

renewable energy source in pulp industry is black liquor and investment and running cost of 

black liquor use become cheaper over year due to the technological progress (e.g. Black 

liquor gasification, see Naqvi et al. (2010)). This technological advance allows pulp industry 

to reduce CO2 emissions without huge financial stress. 

Non-zero inefficiency score indicates that production is not technically and 

environmentally efficient. Because inefficiency score represent how many percentage 

industrial sectors are available to potentially increase value added and decrease CO2 

emissions simultaneously without increasing input, we can estimate potential improvement 

amount of value added and CO2 emissions. From Table 3, 12 manufacturing industries could, 

on average and without changing resources or developing technology, increase value added 

by US$ 5.72 to 7.04 trillion depending on the specification of the model used and reduce CO2 

emissions by 6.38 to 7.84 million ton-CO2. 

 

<Table 3 about here> 
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We also find that electricity, chemical, metal, and machinery industries have large 

potential to reduce CO2 emissions. On the other hand, construction, mining, textile, and wood 

industries have small potential to reduce CO2 emissions. Construction and transport industries 

have large potential of value added but potential CO2 reduction is small. Then, we suggest 

setting high priority to increase value added in these two industries to achieve economic 

development in low carbon society. While, electricity, metal, and mineral industry have large 

potential to reduce CO2 emissions but value added increase potential is small comparing with 

CO2 reduction potential. Therefore, high priority for CO2 reduction policy targeting 

inefficient production in these three sectors is effective to reduce CO2 emissions. 

 

5.2. Elasticity and asymmetry inter-fuel substitution 

Recall that the MES measures the relative change in shadow prices for different fuels due to 

relative changes in fuel quantities. As these are indirect elasticities, the higher its value (in 

absolute terms), lower is the degree of interaction between fuels. The MES at the industry 

level are shown in Tables 4. Negative score of MES represents complementally relationship 

and positive score shows substitutability. 

 

<Table 4 about here> 

 

 From Table 4, there are substitution relationship in fossil fuel and renewable energy 

(m56> 0) in four industries, namely, electricity, machinery, mining and transport as a general 

expectation. Note that the substitution possibilities are highest in the electricity industry and 

lowest for the transport industry. Meanwhile, we find complementally relationship between 

non-renewable energy and renewable energy (m56< 0) in metal, chemical, construction, food, 

mineral, pulp, textile, and wood industries. In particular, food and pulp industries have strong 

complementally relationship. One interpretation of this result is these two industries have 

advantage to produce biofuels by waste of production such as wood chip and plant stalk. In 

the meantime, waste amount of production usually depend on the production scale in 

manufacturing sectors, implying available amount of primary solid biofuels have positive 

relationship with the amount of total energy supply (Bright et al., 2010). Thus, 

complementally relationship between renewable and non-renewable energy can exist. 

However, the main reasons of complementally relationship are different among 

industries. From table 4, strong complementally relationship from renewable energy to non-

renewable energy in food industry (m52> 1) but not in pulp industry (m52< 1). This is 
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because usage of renewable energy is different between pulp and food industry. Food 

industry is able to substitute natural gas and oil for combustion by primary solid biofuels in 

production process. In the meantime, pulp and paper industry use oil products as both 

combustion and intermediate material input, which make difficult to substitute oil product by 

biofuels (Wetterlund et al., 2011). 

 From Table 4, we observe asymmetric substitutional relationship between renewable 

and non-renewable energy. Especially asymmetric relationship between renewable and 

electricity is observed in electricity and machinery industries. There are several previous 

studies focusing on asymmetric inter-fuel substitution (e.g., Gately and Huntington, 2002; 

Griffin and Schulman, 2005) while, most of them focus on the inter-fuel substitution 

relationship among non-renewable energies. From our result, we find that there is asymmetric 

inter-fuel substitution relationship between renewable and non-renewable energy. 

Additionally, this relationship is different among industry. 

 Our results do not support high possibility of substitution between fossil fuels and 

renewable resources in their simulations. This may be possible in the very long-run as the 

innovation widens the range of technological possibilities. But in the medium to short run at 

least these possibilities are less likely because neither gas nor coal can easily substitute for 

liquid fuels used in internal combustion engines. The elasticity is due to the inertia of existing 

equipment and to the technical constraints imposed on the system by the energy carriers that 

transform primary into final energy and into specific end-use energy services. 

 

5.3. Shadow price of CO2 

Table 5 provide industry specific shadow prices of CO2. From Table 5, the shadow price 

differs by industry. Construction and machinery industries have high shadow prices. 

Meanwhile chemical, electricity, mineral, pulp industries have low shadow prices. It is 

supposed to be that in the industries there are possibilities of inter-fuel (fossil fuel to 

renewable) substitution lower should be the price of mitigating the CO2 emissions. This is 

weakly confirmed by the relationship between the shadow prices of CO2 emissions and the 

Morishima elasticity of substitution between fossil fuels and renewable. For example, we find 

complementarity between fossil fuels and renewable and the shadow prices are higher in this 

industry. Similarly it is supposed that the firms/industries which are technically inefficient 

they can mitigate the carbon emissions simply by increasing the technical efficiency and the 

shadow prices should be low for these firms/industries. But our results do not support this 

hypothesis. This may be due to the technological constraints faced by those firms which are 
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technically inefficient. That is, these firms are technical inefficient due to the constraints of 

technological lock-ins which are making it costly to dispose off the carbon emission and 

shadow prices are higher as well it is difficult to find the possibilities of substitution between 

fossil fuels and renewable.  

 Moreover, because most OECD countries ratified Kyoto protocol, we consider 

industrial sector shift their strategy to more low carbon after Kyoto protocol adopted (in 

1997) or Kyoto protocol into force (in 2005). Then, we divide our dataset into two groups 

which are “before Kyoto” and “after Kyoto” to check the differences of shadow price of CO2 

between two groups. We apply the student t-test to check the significance of difference. 

 

<Table 5 about here> 

 

 From Table 5, there is a statistically significant difference before and after Kyoto 

protocol adopted (in 1997) in metal, chemical, electricity, mineral, pulp, textile, transport, 

and wood industries. In these industries, the shadow price in after Kyoto is significantly 

higher than before Kyoto. Additionally, we observe statistically significant differences of the 

shadow price before and after Kyoto protocol into force (2005) in all industries except 

construction and mining sectors. One interpretation of these results is increase of renewable 

energy use share which is more costly than fossil fuels. Main energy source in wood 

industries are renewable energy, especially primary solid biofuels (see Table 1). From our 

dataset, renewable energy use share in total energy use was increased from 26.5% before 

Kyoto to 38.8% after Kyoto in wood industry. According to Carriquiry et al. (2011), cost of 

biofuel energy is much higher than fossil fuels. This information implies that shadow price of 

CO2 increases due to expansion of biofuel energy use in wood industry. 

 In general, we expect that CO2 shadow prices would be higher in sector where there is 

little substitution possibilities. However, we find in several sectors where renewables and 

fossil fuels are found to be complements, and CO2 shadow prices are low. They might be the 

sectors where the shadow prices can keep low by better management of CO2 and therefore 

substitution possibilities do not have to be searched for. 

  

6. Conclusions 
Elasticity of inter-fuel substitution between renewable and non-renewable energy is important 

to understand effective climate change mitigation policy. Because of the lack of elasticity 
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estimates between renewable and non-renewable in the literature, numerical modeling needs 

to assume specific number and these are substitute. We estimate the Morishima elasticity of 

substitution between different fossil fuels and renewable resources using industry level data 

for the OECD countries. 

 Substitution relationship from non-renewable energy to renewable energy holds for 

four industries. We find complementally relationship between non-renewable energy and 

renewable energy in metal, chemical, construction, food, mineral, pulp, textile, and wood 

industries. In particular, food and pulp industries have strong complementally relationship. 

Strong substitution relationship might be possible in the very long-run as the innovation 

widens the range of technological possibilities. But in the medium to short time period at 

least these possibilities are less likely because renewable energy have difficulty to substitute 

for fossil fuels used as intermediate products. The elasticity is due to the inertia of existing 

equipment and to the technical constraints imposed on the system by the energy carriers that 

transform primary into final energy and into specific end-use energy services. 

 We also found shadow price of CO2 increased after Kyoto protocol adopted in nine 

industries, and after into force in ten industries. Further researchers need to investigate more 

disaggregated analysis to capture the technological differences in detail. Additionally, 

elasticity estimation focusing developing countries is also needed because that is important 

information to set the target and obligation of post-Kyoto protocol. 

 Because difficulty of substitution between fossil fuels and renewable energy is 

different among industries, developing countries which will be industrialized need to select 

the plant location considering with industrial characteristics and easiness of biomass 

procurement, especially food industry and pulp and paper industry which have advantage to 

substitute renewable energy from fossil fuels. Intergovernmental Panel on Climate Change 

(IPCC) pointed that bio-energy with carbon capture and storage (BECCS) is effective 

approach to reach atmospheric concentration levels of about 450ppm CO2 equivalent by year 

2100 in their fifth assessment report reports (IPCC, 2014). However, BECCS faces the task 

of land use problems (Tavoni and Socolow, 2013). Therefore, location layout of industrial 

sector is needed to consider substitution elasticity between renewable energy and fossil fuel, 

and applicability of new GHG emission management approach. 
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Table 1: Mean value of data variables, 15-year mean values 

(Figures in second rows in parenthesis are standard deviations) 

 
Value 
added CO2 Employee Capital Coal Oil Gas Electricit

y 
Renewabl

e 
  Billion U.S.$ Million ton-

CO2 1000 person Billion 
U.S.$ Peta joule Peta joule Peta joule Peta joule Peta joule 

Metal 
33.75 33.47 476.41 62.96 45.75 20.27 127.72 102.76 0.12 

(49.87) (47.84) (591.41) (98.90) (60.69) (28.69) (205.08) (142.50) (0.44) 

Chemical 
47.90 30.42 388.83 84.83 25.01 60.86 149.05 107.33 1.62 

(83.90) (66.25) (526.25) (131.71) (56.40) (111.38
) (396.58) (212.95) (5.44) 

Constructio
n 

88.65 2.09 1,465.86 47.67 0.05 22.44 3.11 2.56 3.05 

(143.41) (3.29) (2,070.89
) (2.16) (0.24) (39.73) (6.28) (2.50) (8.04) 

Electricity 
32.68 217.16 130.89 207.25 1,834.62 163.62 526.81 82.26 210.83 

(64.29) (503.48) (199.91) (336.76) (4,638.18
) 

(300.09
) 

(1,064.28
) (168.36) (388.42) 

Food 
29.87 11.94 415.62 46.21 10.00 25.91 64.97 38.62 7.37 

(46.88) (23.01) (535.50) (59.35) (30.89) (39.92) (141.87) (65.32) (19.33) 

Machinery 
25.00 12.92 367.86 38.63 1.64 15.45 44.50 66.48 0.06 

(37.21) (23.94) (452.54) (64.68) (3.64) (23.49) (97.80) (114.64) (0.20) 

Mining 
23.20 2.52 73.35 81.03 0.84 5.64 2.21 11.83 0.01 

(58.67) (5.26) (145.07) (219.71) (1.75) (12.88) (4.52) (27.37) (0.05) 

Mineral 
9.32 15.81 137.96 18.07 51.38 38.23 62.59 29.98 2.02 

(12.81) (21.37) (150.34) (21.13) (85.09) (46.79) (104.36) (37.47) (4.55) 

Pulp 
26.67 14.79 345.63 37.34 16.03 22.75 55.43 64.97 71.25 

(50.13) (31.39) (543.74) (56.24) (38.73) (42.98) (131.33) (110.08) (187.72) 

Textile 
9.61 4.17 271.14 18.47 1.60 8.15 16.67 17.03 0.18 

(13.37) (7.85) (324.03) (25.47) (3.79) (15.27) (31.97) (31.25) (0.56) 

Transport 
29.32 4.68 365.36 56.18 1.50 5.90 19.73 21.22 0.01 

(49.99) (10.39) (516.29) (96.07) (5.51) (13.64) (48.02) (41.90) (0.04) 

Wood 
5.10 2.35 100.31 7.96 0.24 7.14 5.99 10.65 20.79 

(8.40) (6.90) (134.88) (9.70) (0.93) (23.97) (19.61) (25.24) (63.18) 

All 
30.09 29.36 378.27 58.88 165.72 33.03 89.90 46.31 26.43 

(65.72) (158.55) (798.37) (142.42) (1,428.58
) 

(105.34
) (367.58) (109.43) (138.90) 
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Table 2: Estimated coefficients of directional output distance function 

Variable 
Specification 1   Specification 2 

Coefficient z-stat  Coefficient z-stat 
GDP -0.21  *** -15.96   -0.47  *** -24.62  
(GDP)2 = (CO2)2 = GDP×CO2 0.03  *** 6.44   0.01  * 1.34  
GDP×employee = CO2×employee 0.04  *** 7.33   0.08  *** 10.33  
GDP×capital = CO2×capital -0.03  *** -10.63   -0.02  *** -3.38  
GDP×renewable = CO2×renewable -0.01  *** -5.05   -0.00  * -1.59  
GDP×nonrenewable = CO2×nonrenewable -0.08  *** -12.27   - 
GDP×coal = CO2×coal -  0.01  *** 5.88  
GDP×electricity = CO2×electricity -  -0.03  *** -5.21  
GDP×gas = CO2×gas -  0.00   0.32  
GDP×oil = CO2×oil -  -0.04  *** -8.52  
CO2 0.79   -  0.53   - 
y1time = y2time 0.01  *** 9.31    0.00  *** 3.51  
employee 0.01   0.98   0.12  *** 4.47  
employee × employee 0.02  *** 2.34   -0.03  *** -2.48  
employee × capital -0.04  *** -6.97   -0.06  *** -6.02  
employee × renewable 0.00  * 1.34   0.02  *** 5.48  
employee × non-renewable -0.06  *** -7.09   - 
employee × coal -  -0.03  *** -6.38  
employee × electricity -  -0.02  *** -2.58  
employee × gas -  -0.01   -1.18  
employee × oil -  0.01  *** 2.19  
employee × time -0.00    -0.17    -0.01  *** -3.30  
capital 0.23  *** 18.96   0.36  *** 15.30  
capital × capital 0.01   1.04   0.02  *** 2.49  
capital × renewable 0.00   1.25   -0.01  *** -4.76  
capital × non-renewable 0.04  *** 9.17   - 
capital × coal -  -0.00   -0.69  
capital × electricity -  0.01   0.76  
capital × gas -  -0.05  *** -9.37  
capital × oil -  0.03  *** 6.57  
capital × time -0.01  *** -6.38    -0.00  ** -2.07  
coal -  -0.04  *** -8.14  
coal × coal -  0.00  *** 9.74  
coal × electricity -  -0.01  *** -4.75  
coal × gas -  -0.00   -1.23  
coal × oil -  0.00   1.13  
coal × renewable -  0.00   0.13  
coal × time -   0.00  * 1.84  
electricity -  -0.23  *** -11.86  
electricity × electricity -  0.02  *** 2.35  
electricity × gas -  0.03  *** 6.56  
electricity × oil -  0.02  *** 4.66  
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electricity × renewable -  0.00   0.35  
electricity × time -   0.01  *** 3.61  
gas -  -0.05  *** -3.31  
gas × gas -  -0.01  *** -3.43  
gas × oil -  0.00  ** 2.07  
gas × renewable -  -0.00  *** -2.54  
gas × time -   -0.00    -0.21  
oil -  -0.08  *** -7.95  
oil × oil -  0.01  *** 3.76  
oil × renewable -  0.00   -0.17  
oil × time -   -0.00  *** -2.92  
renewable -0.01  *** -5.81   0.00   0.74  
renewable × renewable -0.00  *** -2.36   -0.00   -1.71  
renewable × non-renewable 0.01  *** 5.68   - 
renewable × time -0.01  *** -6.27    -0.00    -1.33  
non-renewable -0.63  *** -38.78   - 
non-renewable × non-renewable 0.15  *** 16.26   - 
non-renewable × time -0.01  *** -6.27    - 
time -0.00    -1.50    -0.00    -1.46  
time2 0.00  ** 2.03    0.00  ** 2.08  
constant 0.11  *** 3.20   -0.14  *** -2.69  
lnσv2 -5.976 *** -76.74  -4.477  *** -44.14 
lnσu2 -4.196 *** -77.44  -3.090  *** -34.28 
σv 0.050 (0.002)  0.1066 (0.005) 
σu 0.123 (0.003)  0.2134 (0.010) 
σ2 0.018 (0.001)  0.057 (0.003) 
λ 2.435 (0.005)  2.001 (0.015) 
Log-likelihood 2149.09  1137.78 
Observations 2880   2880 
Note:*, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. 
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Table 3: Estimates of technical inefficiency and CO2 reduction potential: 
 Means and Standard Deviation (figures in second rows in parenthesis are standard errors) 

 
Specification 1  Specification 2 

 Inefficiency 
score 

Potentially 
value added 

increase  
(Trillion 
U S $) 

Potentially CO2 
emissions 

reduction (million 
ton-CO2) 

 Inefficiency 
score 

Potentially 
value added 

increase 
(Trillion 
U S $) 

Potentially CO2 
emissions 

reduction (million 
ton-CO2) 

Metal 
0.117 5.086 6.611  0.152 5.330 6.152 

(0.008) (0.672) (0.885)  (0.007) (0.643) (0.887) 

Chemical 
0.085 6.787 4.872  0.148 6.783 3.887 

(0.005) (1.432) (1.277)   (0.004) (0.781) (0.521) 

Construction 
0.126 10.117 0.192  0.201 32.797 0.870 

(0.009) (2.146) (0.027)   (0.013) (5.500) (0.157) 

Electric 
0.107 8.458 62.900  0.156 5.875 49.300 

(0.008) (2.092) (14.200)  (0.006) (1.118) (12.700) 

Food 
0.091 5.306 2.649  0.158 6.037 2.972 

(0.006) (1.031) (0.621)  (0.006) (1.048) (0.646) 

Machinery 
0.136 6.973 5.422  0.175 6.154 4.496 

(0.011) (1.273) (1.093)  (0.008) (0.975) (0.871) 

Mining 
0.137 7.487 0.877  0.160 5.504 0.641 

(0.011) (1.743) (0.180)  (0.007) (1.320) (0.132) 

Mineral 
0.099 1.444 2.613  0.151 1.315 2.536 

(0.006) (0.179) (0.373)  (0.005) (0.120) (0.306) 

Pulp 
0.105 6.537 4.077  0.143 5.363 2.976 

(0.007) (1.238) (0.906)  (0.004) (0.893) (0.578) 

Textile 
0.123 2.603 1.722  0.153 1.756 1.020 

(0.012) (0.539) (0.373)  (0.006) (0.235) (0.173) 

Transport 
0.118 6.821 1.533  0.154 6.575 1.204 

(0.009) (1.419) (0.373)  (0.006) (1.008) (0.252) 

Wood 
0.107 0.971 0.639  0.160 1.021 0.584 

(0.007) (0.178) (0.175)  (0.007) (0.163) (0.151) 

All 
0.113 5.716 7.845  0.159 7.043 6.383 

(0.002) (0.385) (1.236)   (0.002) (0.536) (1.091) 
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Table 4: Inter-fuel Morishima Elasticity of Substitution by Industry (figures in second rows in parenthesis are standard errors) 

 

Note: 1. Coal, 2. Electricity, 3. Natural gas, 4. Oil and oil products, 5. Renewables, 6. Total non-renewables

Industry m56 m65 m12 m21 m13 m31 m14 m41 m15 m51 m23 m32 m24 m42 m25 m52 m34 m43 m35 m53 m45 m54 

Metal 
-1.485 -0.063 0.517 0.336 -0.249 0.120 -0.864 0.186 -0.003 -0.606 -0.264 -0.192 1.988 0.947 -0.009 -3.227 -0.886 0.059 0.033 1.692 -0.003 -1.134 

(0.692) (0.019) (0.041) (0.029) (0.022) (0.010) (0.966) (0.103) (0.009) (0.247) (0.023) (0.015) (2.246) (1.080) (0.010) (1.414) (0.965) (0.241) (0.009) (0.641) (0.009) (0.541) 

Chemical 
-0.522 -0.033 0.640 0.425 -0.387 0.143 -2.762 0.369 -0.036 0.643 -0.233 -0.144 6.396 1.682 -0.039 2.748 -2.775 -0.039 -0.011 -2.492 -0.035 0.885 

(0.898) (0.023) (0.118) (0.087) (0.093) (0.028) (2.962) (0.266) (0.062) (0.457) (0.035) (0.012) (6.888) (1.848) (0.062) (2.366) (2.961) (0.098) (0.062) (2.109) (0.062) (0.684) 

Construction 
-1.558 -0.048 0.551 -0.192 -0.403 -0.042 0.033 -0.075 0.016 0.078 -0.415 -0.268 -0.116 -0.102 0.013 -0.452 0.038 -0.187 0.057 -1.755 0.017 1.018 

(1.670) (0.008) (0.071) (0.567) (0.113) (0.179) (0.008) (0.180) (0.065) (1.478) (0.062) (0.188) (0.015) (0.046) (0.065) (2.041) (0.012) (0.026) (0.065) (1.954) (0.065) (0.860) 

Electricity 
2.135 -0.021 0.113 -0.048 0.022 -0.002 0.076 -0.030 0.015 0.128 -0.256 -0.175 -0.145 -0.058 0.012 -0.187 0.037 -0.134 0.039 -0.642 0.016 -0.122 

(1.763) (0.027) (0.154) (0.132) (0.101) (0.042) (0.054) (0.042) (0.037) (0.169) (0.029) (0.023) (0.124) (0.074) (0.038) (1.017) (0.052) (0.042) (0.037) (0.524) (0.037) (0.659) 

Food 
-6.650 -0.102 -0.694 -1.313 0.683 -0.406 0.136 -0.430 -0.753 0.767 -0.231 -0.169 -0.227 -0.104 -0.756 16.712 0.070 -0.152 -0.727 -4.101 -0.752 8.552 

(5.676) (0.049) (0.889) (1.195) (0.687) (0.378) (0.036) (0.380) (0.559) (0.328) (0.024) (0.010) (0.031) (0.009) (0.559) (16.426) (0.012) (0.015) (0.559) (3.356) (0.559) (9.176) 

Machinery 
3.595 -0.023 0.517 0.344 -0.234 0.119 -0.031 0.115 -0.000 0.300 -0.459 -1.946 0.059 0.162 -0.008 1.068 -0.179 -0.279 0.022 -1.138 -0.005 0.714 

(6.099) (0.041) (0.060) (0.058) (0.046) (0.019) (0.028) (0.021) (0.025) (0.310) (0.177) (2.328) (0.064) (0.088) (0.025) (1.123) (0.158) (0.171) (0.025) (1.138) (0.026) (0.635) 

Mining 
5.905 0.271 0.047 -0.054 0.143 0.013 0.102 -0.036 -6.428 30.433 -0.295 -0.206 -0.157 -0.107 -6.434 -5,977.681 0.010 -0.228 -6.406 -0.332 -6.427 6.763 

(4.574) (0.272) (0.063) (0.101) (0.103) (0.031) (0.020) (0.033) (6.428) (29.901) (0.049) (0.026) (0.028) (0.025) (6.428) (6,004.616) (0.008) (0.027) (6.426) (1.285) (6.428) (6.792) 

Mineral 
-4.426 -0.017 0.592 0.393 -0.327 0.139 0.082 0.105 0.127 -1.012 -0.291 -0.163 -0.207 -0.123 0.117 -2.884 0.066 -0.172 0.148 3.159 0.123 0.245 

(2.894) (0.035) (0.063) (0.053) (0.051) (0.018) (0.008) (0.015) (0.224) (0.717) (0.032) (0.012) (0.018) (0.014) (0.224) (3.373) (0.007) (0.014) (0.224) (3.657) (0.224) (1.398) 

Pulp 
-5.464 -0.171 0.393 0.169 -0.158 0.062 0.121 0.031 -0.021 0.189 -0.221 -0.211 -0.280 -0.149 -0.024 0.643 0.089 -0.139 0.005 0.839 -0.019 -0.148 

(3.296) (0.102) (0.482) (0.589) (0.413) (0.187) (0.044) (0.187) (0.027) (0.242) (0.024) (0.017) (0.048) (0.021) (0.027) (1.836) (0.020) (0.013) (0.027) (0.734) (0.027) (0.562) 

Textile 
-2.000 0.000 0.641 0.447 -0.356 0.153 0.101 0.123 0.000 -0.301 -0.267 -0.039 -0.255 -0.110 0.000 2.753 0.146 -0.164 0.000 -0.676 0.000 2.048 

(1.454) (0.000) (0.093) (0.076) (0.058) (0.027) (0.023) (0.022) (0.000) (0.151) (0.038) (0.122) (0.053) (0.018) (0.000) (2.795) (0.053) (0.025) (0.000) (0.493) (0.000) (2.196) 

Transport 
55.371 0.674 0.300 -0.201 -0.088 -0.051 0.076 -0.081 -0.025 -0.043 -0.399 -0.269 -0.134 -0.015 -0.029 -0.124 0.011 -0.198 -0.006 -0.370 -0.024 0.073 

(56.256) (0.713) (0.167) (0.334) (0.116) (0.105) (0.015) (0.107) (0.025) (0.223) (0.072) (0.053) (0.022) (0.022) (0.025) (1.236) (0.008) (0.025) (0.024) (0.726) (0.025) (0.601) 

Wood -2.435 -0.114 0.071 -0.056 -0.066 -0.000 0.056 -0.027 -0.017 0.205 0.270 -0.425 -0.229 -0.338 -0.011 2.364 0.022 -0.136 0.005 -3.458 -0.016 0.488 

(2.642) (0.057) (0.147) (0.109) (0.079) (0.034) (0.014) (0.037) (0.028) (0.179) (0.390) (0.214) (0.098) (0.208) (0.029v (2.827) (0.006) (0.025) (0.028) (3.517) (0.028) (0.397) 
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Table 5: Shadow Prices of CO2 by industry (U.S.$ per ton-CO2) 

(Mean values for the observations satisfying monotonicity conditions) 

Industry 

Mean value of  
Shadow price Shadow  

price  
difference  

p >|t| 
 Mean value of  

Shadow price Shadow  
price  

difference  
p >|t|  

 
1995-2009 1995-1997 1998-2009  1995-2005 2006-2009 

Metal 7.507 4.334 8.300 3.966 0.000  5.867 12.016 6.150 0.000 

Chemical 7.259 4.373 7.981 3.608 0.000  4.373 10.898 6.525 0.000 

Construction 19.267 3.878 23.179 19.301 0.538  5.307 59.678 54.371 0.059 

Electricity 7.181 4.293 7.914 3.621 0.000  5.722 11.389 5.667 0.000 

Food 7.399 4.566 8.118 3.552 0.000  6.186 10.899 4.713 0.000 

Machinery 13.962 4.615 16.336 11.721 0.373  6.594 34.311 27.717 0.020 

Mining 7.838 4.858 8.587 3.728 0.154  7.144 9.706 2.562 0.278 

Mineral 6.908 4.318 7.555 3.237 0.000  5.670 10.311 4.641 0.000 

Pulp 7.677 4.370 8.504 4.134 0.000  5.660 13.223 7.563 0.000 

Textile 7.891 5.533 8.487 2.954 0.003  6.200 12.692 6.492 0.000 

Transport 8.050 4.445 8.960 4.515 0.035  5.995 13.882 7.887 0.000 

Wood 8.685 4.916 9.627 4.711 0.000  6.540 14.583 8.043 0.000 

All 9.076 4.544 10.218 5.674 0.036   6.067 17.484 11.417 0.000 
Note:Right side p-value is result of two tailed student's t-test for mean value differences between before and after Kyoto 
protocol adopted (1997) and into force (2005). 
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Figure 1: Shephard Output and Directional Distance Functions 
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Appendix 1. Main purpose of energy use by type of industry 

 Coal / peat 
Oil/petroleum 

 products 
Natural gas Electricity 

Food 
Private power generation, 

Fuel for boiler 

Fuel for equipment, 

Packaging materials, 

Private power generation, 

Fuel for equipment, 

Private power generation 

Fuel for automation 

production equipment 

Wood 
Private power generation, 

Fuel for boiler 

Fuel for equipment, 

Private power generation 
Fuel for equipment, 

Fuel for automation 

production equipment 

Chemical 

Material for coal product, 

Private power generation, 

Fuel for boiler 

Material for petroleum product, 

Petroleum solvent, 

Private power generation, 

   

Fuel for equipment, 

Private power generation 

Fuel for automation 

production equipment 

Pulp 
Private power generation, 

Fuel for boiler 

Ink for printing, 

Fuel for equipment, 

Petroleum solvent 

Fuel for equipment, 

Private power generation 

Fuel for automation 

production equipment 

Minerals 
Material for cement, 

Fuel for boiler 

Material for cement, 

Fuel for equipment, 

Thermal source 

Fuel for equipment, 

Private power generation 

Fuel for equipment, 

(e.g. Electric cement mill) 

Metal 

Material for cokes product, 

Fuel for equipment, 

Private power generation 

Fuel for equipment, 

Private power generation, 

Thermal source 

Fuel for equipment, 

Private power generation 

Fuel for equipment, 

(e.g. Electric arc furnaces) 

Machinery Private power generation 

Fuel for equipment, 

Petroleum product for painting, 

Grease, Petroleum solvent, 

Fuel for equipment, 

Private power generation 

Fuel for automation 

production equipment 

Transport Private power generation 

Fuel for equipment, 

Petroleum product for painting, 

Grease, Petroleum solvent, 

Fuel for equipment, 

Private power generation 

Fuel for automation 

production equipment 

Construction Material  for coal tar 
Fuel for construction equipment, 

Material  for asphalt, 

    

Fuel for equipment, 

Private power generation 
Fuel for equipment 

 

Appendix 2. Data sample description 

Time period 1995-2009 

Country 

(1) Australia, (2) Austria, (3) Czech Republic, (4) Denmark, (5) Finland, (6) Germany, (7) 

Italy, (8) Japan, (9) Korea, (10) Netherlands, (11) Portugal, (12) Slovenia,(13) Spain, (14) 

Sweden, (15) United Kingdom, (16) United States 

Industry type 
(1) Metal, (2) Chemical, (3) Construction, (4) Electricity, (5) Food, (6) Machinery, 

(7)Mining, (8) Mineral, (9) Pulp, (10) Textile, (11) Transport, (12) Wood 

Energy type (1)Coal, (2) Electricity, (3) Natural gas, (4) Oil, (5) Renewable energy 
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Appendix 3. Definition of fuel data 

Coal (coal, coal 
product and peat) 

Anthracite BKB/peat briquettes Brown coal Coal tar Coke oven coke 

Coking coal Gas coke Hard coal Lignite Other bituminous coal 

Patent fuel Peat 
Sub-
bituminous 
coal   

Oil  (petroleum 
product and crude 
oil) 

Additives/blending 
components Aviation gasoline Bitumen Crude oil Crude/NGL/feedstocks 

(if no detail) 

Ethane Fuel oil Gas/diesel oil Gasoline 
type jet fuel Kerosene type jet fuel 

Liquefied petroleum gases 
(LPG) Lubricants Motor 

gasoline Naphtha Natural gas liquids 

Non-specified oil products Other hydrocarbons Other 
Kerosene 

Paraffin 
waxes Petroleum coke 

Refinery feedstocks Refinery gas White spirit & 
SBP   

Natural 
 gas 

Blast furnace gas Coke oven gas Gas works gas Natural gas  
Other recovered gases     

Electricity Elec/heat output from non-
specified manufactured gases Electricity Electric 

boilers   

Renewable 
 Energy 

Biodiesels Biogases Biogasoline Charcoal Other recovered gases 

Municipal waste (renewable) Non-specified primary 
biofuels and waste 

Other liquid 
biofuels 

Primary 
solid biofuels Geothermal 

Other sources Solar photovoltaics Solar thermal Tide, wave 
and ocean Wind 

Hydro     
 

Appendix 4. Breakdown of renewable energy use share in total renewable energy by industries 

 Metal Chemic
al 

Constructio
n 

Electricit
y Food Machiner

y 
Minin
g 

Mineral
s Pulp Textil

e 
Transpo
rt 

Woo
d 

Biodiesels 0.00% 0.00% 15.99% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Biogases 0.00% 16.47% 2.63% 2.86% 1.86% 1.56% 0.00% 0.05% 0.06% 0.10% 52.78% 0.00% 

Biogasoline 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Geothermal 0.00% 0.00% 0.00% 16.39% 0.00% 0.00% 0.00% 0.00% 0.49% 0.00% 0.00% 0.00% 

Hydro 0.00% 0.00% 0.00% 60.41% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Municipal waste 
(renewable) 1.20% 2.14% 0.00% 4.67% 0.04% 0.62% 28.26% 7.68% 0.09% 0.10% 0.00% 0.00% 

Other liquid biofuels 0.15% 0.27% 0.00% 0.19% 0.06% 1.56% 10.87% 0.09% 0.48% 0.00% 8.33% 0.00% 

Primary solid biofuels 98.65
% 81.12% 80.43% 10.06% 98.03

% 96.26% 60.87% 92.19% 98.87
% 

99.80
% 38.89% 99.99

% 

Solar photovoltaics 0.00% 0.00% 0.00% 0.15% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Solar thermal 0.00% 0.00% 0.95% 0.14% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Tide, wave and ocean 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Wind 0.00% 0.00% 0.00% 5.13% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
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Appendix 5. Coefficient score of country and industry dummy variables 

 Specification 1  Specification 2 
Country and industry name Coefficient z-score   Coefficient z-score 

Australia -0.142  *** -4.230   0.162 *** 3.420 
Austria -0.025   -0.740   0.279 *** 5.680 
Czech Republic -0.078  ** -2.320   0.243 *** 5.030 
Denmark -0.046   -1.370   0.283 *** 5.720 
Finland -0.010   -0.290   0.282 *** 5.660 
Germany -0.170  *** -5.390   0.254 *** 6.100 
Italy -0.194  *** -5.910   0.178 *** 3.850 
Japan -0.170  *** -5.210   0.129 *** 2.860 
Korea -0.169  *** -5.110   0.106 ** 2.210 
Netherlands -0.018   -0.550   0.283 *** 5.920 
Portugal -0.061  * -1.820   0.244 *** 4.960 
Slovenia -0.030   -0.890   0.276 *** 5.530 
Spain -0.112  *** -3.360   0.239 *** 5.060 
Sweden 0.067  ** 2.000   0.368 *** 7.270 
United Kingdom -0.095  *** -2.930   0.322 *** 7.470 
United States -   - 
Basic metals and fabricated metal -0.024  *** -2.820   -0.016   -1.010  
Chemical, rubber, plastics and fuel -0.016  * -1.950   -0.014   -0.920  
Construction -0.058  *** -5.920   -0.024   -1.400  
Electricity, gas and water supply -0.014  * -1.670   0.010   0.600  
Food , beverages and tobacco -0.050  *** -6.060   -0.039  ** -2.520  
Machinery, nec 0.004   0.470   0.020   1.280  
Mining and quarrying 0.119  *** 11.550   0.077  *** 4.600  
Other non-metallic mineral -0.067  *** -8.100   -0.044  *** -2.830  
Pulp, paper, paper , printing and publishing -0.009   -1.060   -0.035  ** -2.300  
Textiles, textile , leather and footwear -0.022  *** -2.590   -0.025   -1.630  
Transport equipment 0.000   0.000   -0.037  ** -2.400  
Wood and of wood and cork -   - 
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