280 research outputs found

    Enhancement of the conductivity of Ba2In2O5 through phosphate doping

    Get PDF
    In this paper, we demonstrate the successful incorporation of phosphate into Ba2In2O5, which leads to the conversion from an orthorhombic to a cubic unit cell. The resulting increased oxygen vacancy disorder leads to an enhancement in the oxide ion conductivity at low temperatures. In addition, in wet atmospheres, significant proton conduction is observed

    Probing high oxygen activity in YSZ electrolyte

    Get PDF
    The redox behavior of terbium and praseodymium doped yttria-stabilized zirconia (YSZ) is studied. The aim is to identify spectroscopic probes and a suitable experimental procedure to monitor the oxygen activity in YSZ electrolytes in solid oxide cells with spatial resolution and at operation conditions (e.g. at high temperatures). Sintered ceramics and crystals with 0.3 to 10 at% content of Pr or Tb ions in YSZ were prepared. Upon equilibration in atmospheres from 10-20to 100 bar PO2around 800 °C, the majority of these rare earth ions are in the 3 + oxidation state. At oxygen pressures above 0.001 bar, the small proportion of Tb4+and Pr4+formed give rise to intense optical absorption around 300 500 nm and to decreased reflectance. From the reflectance measurements it is shown that the Tb4+concentration increases as PO21/4, as correspond to the trapping of the holes generated upon the oxygen incorporation as Tb4+. This competitive absorption causes a decrease of the Tb3+luminescence. A quantitative relationship of the Tb3+luminescence intensity with PO2at 800 °C has been found, which is compatible with the trapping model. The spatial resolution of the experimental procedure could be very roughly estimated of the order of 100 µm

    Raman spectroscopy insights into the a- and d-phases of formamidinium lead iodide (FAPbI3)

    Get PDF
    Solar perovskites have received phenomenal attention and success over the past decade, due to their high power conversion efficiencies (PCE), ease of fabrication and low cost which has enabled the prospect of them being a real commercial contender to the traditional silicon technology. In one of the several developments on the archetypal MAPbI3perovskite absorber layer, FAPbI3was found to obtain a higher PCE, likely due to its more optimum band gap, with doping strategies focusing on the inclusion of MA+/Cs+cations to avoid the unfavourable phase transformation to a photoinactive phase. To better understand the phase change from the photoactive cubic (Pm3¯m) black (a) phase to the unwanted photoinactive (P63/mmc) yellow (d) phase, we make use of variable temperature Raman spectroscopy to probe the molecular species and its relationship to the inorganic framework. We show for the first time there to be no Raman active modes for the a phase up to 4000 cm-1, which can be correlated to thePm3¯mcubic symmetry of that phase. Our detailed studies suggest that previous reports of the observation of Raman peaks for this phase are likely associated with degradation reactions from the localised laser exposure and the formation of Raman active lead oxide. In addition, we have identified water as a contributing factor to the transformation, and observed a corresponding signal in the Raman spectra, although confirmation of its exact role still remains inconclusive

    Biomimetic surface functionalization of clinically relevant metals used as orthopaedic and dental implants

    Get PDF
    Titanium and its alloys or tantalum (Ta) are materials used in orthopaedic and dental implants due to their excellent mechanical properties and biocompatibility. However, their bioactivity and osteoconductivity is low. With a view to improving the bioactivity of these materials we hypothesised that the surface of Ta and TiAl6V4 can be functionalised with biomimetic, amorphous nano-sized calcium phosphate (CaP) apatite-like deposits, instead of creating uniform coatings, which can lead to flaking, delamination and poor adherence. We used Ta and TiAl6V4 metal discs with smooth and rough surfaces. Amorphous CaP apatite-like particles were deposited on the different surfaces by a biomimetic rapid two-step soaking method using concentrated simulated body fluid (SBF) solutions without a pre-treatment of the metal surfaces to induce CaP deposition. Immersion times in the second SBF solution of 48 and 18 h for Ta and TiAl6V4 respectively produced CaP deposits composed of amorphous globular nano-sized particles that also contained Mg, C and O. Longer immersion times produced more uniform coatings as well as an undesired calcite mineral phase. Prediction of in vivo behaviour by immersion in regular SBF showed that the obtained CaP deposits would act as a catalyst to rapidly form a Ca deficient CaP layer that also incorporates Mg. The amorphous CaP apatite-like deposits promoted initial attachment, proliferation and osteogenic differentiation of bone marrow derived mesenchymal stem cells. Finally, we used our method to functionalise 3D porous structures of titanium alloy made by selective laser sintering. Our study uses a novel and cost-effective approach to functionalise clinically relevant metal surfaces in order to increase the bioactivity of these materials, which could improve their clinical performance

    Anode supported microtubular solid oxide fuel cells running on methane

    Get PDF
    Trabajo presentado al "III Iberian Symposium on Hydrogen, Fuel Cells and Advanced Batteries" celebrado en Zaragoza (España) del 27 al 30 de Junio de 2011.We would like to thank grants MAT2009-14324-C0.2-01 and CIT-120000-2007-50 financed by the Spanish Government and Feder program of the European Community for funding project. M. A. Laguna-Bercero would also like to thank the JAEprogram (CSIC) for financial support.Peer Reviewe

    Fabrication and microstructure of self-supporting thin ceramic electrolytes prepared by laser machining

    Get PDF
    Self-supporting thin Yttria Stabilized Zirconia (YSZ) ceramics electrolytes have been prepared by laser machining. They are carved from a sintered YSZ plate to shape a 20 µm thick and 8 mm in diameter central region, surrounded by an unprocessed 150 µm thick supporting zone. Scanning Electron Microscopy (SEM) and Electron BackScattering Diffraction (EBSD) studies confirmed that the strains produced by the laser processing are small and limited to only one or two layers of YSZ grains (~5 µm). SEM and Transmission Electron Microscopy (TEM) have been also used to characterize the surface of the membrane. It is corrugated and coated with YSZ nanoparticles as a result of the laser plasma deposition. Electrochemical characterization by Impedance Spectroscopy (EIS) showed that this surface morphology improves the electrical performance of the membrane slightly but clearly, reducing the cathode polarization resistance by about 5% in the 650-850 ºC range.This study was funded by the MAT2012-30763 project, which is financed by the Spanish Government (Ministerio de Economía y Competitividad) and the Feder program of the European Union.Peer Reviewe

    Laser-assisted surface melting of Al2O3-YSZ eutectic ceramics

    Get PDF
    [ES] Se presenta un procedimiento para la densificación y/o texturado superficial de cerámicas de Al2O3-YSZ (circona estabilizada con itria) con composición eutéctica mediante fusión zonal asistida por láser. Haciendo un barrido con la radiación proveniente de un láser de potencia sobre piezas cerámicas conseguimos modificar la microestructura y densificar completatmente la capa superficial, con un espesor que va de 30 a 1000 μm. Por ejemplo, con línea estrecha de láser de diodo, fluencia de 1.23 kW/cm2 y velocidades de barrido de 0.14 mm/s, solidificamos capas de 560 μm. El resultado es una superficie de baja rugosidad y no porosa. La microestructura de la muestra es fina debido a su composición eutéctica. La interfase sólido-líquido en el proceso de crecimiento determina la orientación de la microestructura. Se estudia la forma de esta interfase tanto en cortes transversales como longitudinales, lo que permite analizar el efecto que sobre la microestructura tiene la superposición de barridos, que es una alternativa para tratar superficies extensas. Macroscópicamente la frontera entre barridos contiguos es suave. Sin embargo, su microestructura presenta discontinuidad en el espaciado entre las fases debido a la evolución microestructural en la región no fundida sometida a altas temperaturas y a la nucleación preferencial de Al2O3 al comenzar el crecimiento cristalino. Se analizan distintas posibilidades para disminuir el choque térmico inherente al proceso y que conduce a la formación de grietas paralelas a la dirección de procesado y de delaminación. Se observa una mejora importante cuando se precalienta la pieza a tratar, de modo que es posible procesar superficies de cerámicas eutécticas 99% densas.[EN] A procedure for surface densification and/or texturing of Al2O3-YSZ (yttria stabilised zirconia) ceramics with eutectic composition by means of laser surface melting is presented. By scanning a high-power laser beam on a ceramic surface, we achieve a textured and fully dense surface layer from 30 to 1000 microns thick. For example, using a thin diode laser line with fluence 1.23 kW/cm2 and 0.14 mm/s scan rate, the solidified layer has 560 μm depth. We get a low roughness and dense surface. The microstructure is fine (micron size) due to the eutectic composition. The orientation of the microstructure is determined by the shape of the solid-liquid interface in the solidification process. We study the shape of this interface in transverse and longitudinal cross-sections in single as well as overlapping scans, which are required to process large surfaces. From the macroscopic point of view, the transition between adjacent scans is smooth. However, the microstructure presents discontinuity in the interphase spacing due to microstructural evolution in the heat affected region as well as the nucleation of an Al2O3 layer at the beginning of the crystal growth. The thermal shock inherent to the procedure generates cracks longitudinal and transverse to the scanning direction, as well as delaminating cracks. We analyse different possibilities to reduce this thermal shock. The best results are obtained by preheating the substrate, allowing us to process surfaces of Al2O3-YSZ eutectic ceramics 99% dense.Financiación del Ministerio de Ciencia y Tecnología a través de los proyectos MAT2000-1495 y MAT2000-1533-C03-02.Peer reviewe

    Interacting plasmon and phonon polaritons in aligned nano- and microwires

    Get PDF
    The availability of macroscopic, nearly periodic structures known as eutectics opens a new path for controlling light at wavelength scales determined by the geometrical parameters of these materials and the intrinsic properties of their component phases. Here, we analyze the optical waveguiding properties of eutectic mixtures of alkali halides, formed by close-packed arrangements of aligned cylindrical inclusions. The wavelengths of phonon polaritons in these constituents are conveniently situated in the infrared and are slightly larger than the diameter and separation of the inclusions, typically consisting on single-crystal wires down to submicrometer diameter. We first discuss the gap mode and the guiding properties of metallic cylindrical waveguides in the visible and near-infrared, and in particular we investigate the transition between cylinder touching and non-touching regimes. Then, we demonstrate that these properties can be extended to the mid infrared by means of phonon polaritons. Finally, we analyze the guiding properties of an actual eutectic. For typical eutectic dimensions, we conclude that crosstalk between neighboring cylindrical wires is small, thus providing a promising platform for signal propagation and image analysis in the mid infrared

    Mechanical properties of highly textured porous Ni-YSZ and Co-YSZ cermets produced from directionally solidified eutectics

    Get PDF
    It is well known that several ceramic materials develop an usual; and sometimes unique; combination of properties as a result of mixing different phases with similar expansion coefficients. Sometimes they are elastically stiff, have low thermal expansion coefficients, and are resistant to chemical attack. As this paper will show, their mechanical properties are also enhanced. Nanoindentation is used to measure the mechanical properties for each phase of NiO-YSZ and CoO-YSZ eutectics produced by the laser floating zone technique, and also the analogues Ni-YSZ and Co-YSZ cermets produced by reduction from the eutectic precursors. The different tests have been performed at 100 nm, in order to obtain an imprint lower than the size of the secondary phase and extract the hardness and Young's modulus. Moreover, several tests have been performed at 2000 nm of indentation range to obtain the response of each material. The different imprints have been visualized by Atomic Force Microscopy

    Superplastic deformation of directionally solidified nanofibrillar Al2O3-Y3Al5O12-Zr O2 eutectics

    Get PDF
    Nanofibrillar Al2O3–Y3Al5O12–ZrO2 eutectic rods were manufactured by directional solidification from the melt at high growth rates in an inert atmosphere using the laser-heated floating zone method. Under conditions of cooperative growth, the ternary eutectic presented a homogeneous microstructure, formed by bundles of single-crystal c-oriented Al2O3 and Y3Al5O12 (YAG) whiskers of ˜100 nm in width with smaller Y2O3-doped ZrO2 (YSZ) whiskers between them. Owing to the anisotropic fibrillar microstructure, Al2O3–YAG–YSZ ternary eutectics present high strength and toughness at ambient temperature while they exhibit superplastic behavior at 1600 K and above. Careful examination of the deformed samples by transmission electron microscopy did not show any evidence of dislocation activity and superplastic deformation was attributed to mass-transport by diffusion within the nanometric domains. This combination of high strength and toughness at ambient temperature together with the ability to support large deformations without failure above 1600 K is unique and shows a large potential to develop new structural materials for very high temperature structural applications
    corecore