4,351 research outputs found

    A Perspective on the Potential Role of Neuroscience in the Court

    Get PDF
    This Article presents some lessons learned while offering expert testimony on neuroscience in courts. As a biomedical investigator participating in cutting-edge research with clinical and mentoring responsibilities, Dr. Ruben Gur, Ph.D., became involved in court proceedings rather late in his career. Based on the success of Dr. Gur and other research investigators of his generation, who developed and validated advanced methods for linking brain structure and function to behavior, neuroscience findings and procedures became relevant to multiple legal issues, especially related to culpability and mitigation. Dr. Gur found himself being asked to opine in cases where he could contribute expertise on neuropsychological testing and structural and functional neuroimaging. Most of his medical-legal consulting experience has been in capital cases because of the elevated legal requirement for thorough mitigation investigations in such cases, and his limited availability due to his busy schedule as a full-time professor and research investigator who runs the Brain and Behavior Lab at the University of Pennsylvania (“Penn”). Courtroom testimony, however, has not been a topic of his research and so he has not published extensively on the issues in peer-reviewed literature

    A quest for frustration driven distortion in Y2Mo2O7

    Full text link
    We investigated the nature of the freezing in the geometrically frustrated Heisenberg spin-glass Y2Mo2O7 by measuring the temperature dependence of the static internal magnetic field distribution above the spin-glass temperature, Tg, using the muSR technique. The evolution of the field distribution cannot be explained by changes in the spin susceptibility alone and suggests a lattice deformation. This possibility is addressed by numerical simulations of the Heisenberg Hamiltonian with magneto-elastic coupling at T>0.Comment: 5 pages 4 figures. Accepted for publication in PR

    Opportunistic linked data querying through approximate membership metadata

    Get PDF
    Between URI dereferencing and the SPARQL protocol lies a largely unexplored axis of possible interfaces to Linked Data, each with its own combination of trade-offs. One of these interfaces is Triple Pattern Fragments, which allows clients to execute SPARQL queries against low-cost servers, at the cost of higher bandwidth. Increasing a client's efficiency means lowering the number of requests, which can among others be achieved through additional metadata in responses. We noted that typical SPARQL query evaluations against Triple Pattern Fragments require a significant portion of membership subqueries, which check the presence of a specific triple, rather than a variable pattern. This paper studies the impact of providing approximate membership functions, i.e., Bloom filters and Golomb-coded sets, as extra metadata. In addition to reducing HTTP requests, such functions allow to achieve full result recall earlier when temporarily allowing lower precision. Half of the tested queries from a WatDiv benchmark test set could be executed with up to a third fewer HTTP requests with only marginally higher server cost. Query times, however, did not improve, likely due to slower metadata generation and transfer. This indicates that approximate membership functions can partly improve the client-side query process with minimal impact on the server and its interface

    The magnetic structure of the zigzagzigzag chain family Nax_{x}Ca1x_{1-x}V2_2O4_4 determined by muon-spin rotation

    Full text link
    We present muon-spin rotation measurements on polycrystalline samples of the complete family of the antiferromagnetic (AF) zigzagzigzag chain compounds, Nax_xCa1x_{1-x}V2_2O4_4. In this family, we explore the magnetic properties from the metallic NaV2_2O4_4 to the insulating CaV2_2O4_4. We find a critical xc(0.833)x_c(\sim0.833) which separates the low and high Na-concentration dependent transition temperature and its magnetic ground state. In the x<xcx<x_c compounds, the magnetic ordered phase is characterized by a single homogenous phase and the formation of incommensurate spin-density-wave order. Whereas in the x>xcx>x_c compounds, multiple sub-phases appear with temperature and xx. Based on the muon data obtained in zero external magnetic field, a careful dipolar field simulation was able to reproduce the muon behavior and indicates a modulated helical incommensurate spin structure of the metallic AF phase. The incommensurate modulation period obtained by the simulation agrees with that determined by neutron diffraction.Comment: 7 pages, 7 figures, accepted for publication in PR

    Performance-enhanced mesenchymal stem cells via intracellular delivery of steroids

    Get PDF
    Inadequate immunomodulatory potency of mesenchymal stem cells (MSC) may limit their therapeutic efficacy. We report glucocorticoid steroids augment MSC expression and activity of indoleamine-2,3-dioxygenase (IDO), a primary mediator of MSC immunomodulatory function. This effect depends on signaling through the glucocorticoid receptor and is mediated through up-regulation of FOXO3. Treatment of MSCs with glucocorticoids, budesonide or dexamethasone, enhanced IDO expression following IFN-γ stimulation in multiple donors and was able to restore IDO expression in over-passaged MSCs. As IDO enhancement was most notable when cells were continuously exposed to budesonide, we engineered MSC with budesonide loaded PLGA microparticles. MSC efficiently internalized budesonide microparticles and exhibited 4-fold enhanced IDO activity compared to budesonide preconditioned and naïve MSC, resulting in a 2-fold improvement in suppression of stimulated peripheral blood mononuclear cells in an IDO-dependent manner. Thus, the augmentation of MSC immune modulation may abrogate challenges associated with inadequate potency and enhance their therapeutic efficacy

    The Herbertsmithite Hamiltonian: μ\muSR measurements on single crystals

    Get PDF
    We present transverse field muon spin rotation/relaxation measurements on single crystals of the spin-1/2 kagome antiferromagnet Herbertsmithite. We find that the spins are more easily polarized when the field is perpendicular to the kagome plane. We demonstrate that the difference in magnetization between the different directions cannot be accounted for by Dzyaloshinksii-Moriya type interactions alone, and that anisotropic axial interaction is present.Comment: 8 pages, 3 figures, accepted to JPCM special issue on geometrically frustrated magnetis

    The magnetic phase of the perovskite CaCrO3_3 studied with μ+\mu^{+}SR

    Full text link
    We investigated the magnetic phase of the perovskite CaCrO3_3 by using the muon spin relaxation technique accompanied by susceptibility measurements. A thermal hysteresis loop is identified with a width of about 1 K at the transition temperature. Within the time scale of the muon lifetime, a static antiferromagnetic order is revealed with distinct multiple internal fields which are experienced in the muon interstitial sites below the phase-transition temperature, TN=90KT_N=90 K. Above TNT_N, lattice deformations are indicated by transverse-field muon-spin rotation and relaxation suggesting a magneto-elastic mechanism.Comment: 5 pages, 4 figures. Accepted for publication in PR

    GRB 051221A and Tests of Lorentz Symmetry

    Full text link
    Various approaches to quantum gravity suggest the possibility of violation of Lorentz symmetry at very high energies. In these cases we expect a modification at low energies of the dispersion relation of photons that contains extra powers of the momentum suppressed by a high energy scale. These terms break boost invariance and can be tested even at relatively low energies. We use the light curves of the very bright short Gamma-Ray Burst GRB 051221A and compare the arrival times of photons at different energies with the expected time delay due to a modified dispersion relation. As no time delay was observed, we set a lower bound of 0.0066 E_{pl} \sim 0.66 10^{17} GeV on the scale of Lorentz invariance violation.Comment: 9 pages, 2 figure
    corecore