361 research outputs found

    Processing methods for differential analysis of LC/MS profile data

    Get PDF
    BACKGROUND: Liquid chromatography coupled to mass spectrometry (LC/MS) has been widely used in proteomics and metabolomics research. In this context, the technology has been increasingly used for differential profiling, i.e. broad screening of biomolecular components across multiple samples in order to elucidate the observed phenotypes and discover biomarkers. One of the major challenges in this domain remains development of better solutions for processing of LC/MS data. RESULTS: We present a software package MZmine that enables differential LC/MS analysis of metabolomics data. This software is a toolbox containing methods for all data processing stages preceding differential analysis: spectral filtering, peak detection, alignment and normalization. Specifically, we developed and implemented a new recursive peak search algorithm and a secondary peak picking method for improving already aligned results, as well as a normalization tool that uses multiple internal standards. Visualization tools enable comparative viewing of data across multiple samples. Peak lists can be exported into other data analysis programs. The toolbox has already been utilized in a wide range of applications. We demonstrate its utility on an example of metabolic profiling of Catharanthus roseus cell cultures. CONCLUSION: The software is freely available under the GNU General Public License and it can be obtained from the project web page at:

    Systems medicine and the integration of bioinformatic tools for the diagnosis of Alzheimer's disease

    Get PDF
    Because of the changes in demographic structure, the prevalence of Alzheimer's disease is expected to rise dramatically over the next decades. The progression of this degenerative and terminal disease is gradual, with the subclinical stage of illness believed to span several decades. Despite this, no therapy to prevent or cure Alzheimer's disease is currently available. Early disease detection is still important for delaying the onset of the disease with pharmacological treatment and/or lifestyle changes, assessing the efficacy of potential therapeutic agents, or monitoring disease progression more closely using medical imaging. Sensitive cerebrospinal-fluid-derived marker candidates exist, but given the invasiveness of sample collection their use in routine diagnostics may be limited. The pathogenesis of Alzheimer's disease is complex and poorly understood. There is thus a strong case for integrating information across multiple physiological levels, from molecular profiling (metabolomics, lipidomics, proteomics and transcriptomics) and brain imaging to cognitive assessments. To facilitate the integration of heterogeneous data, such as molecular and image data, sophisticated statistical approaches are needed to segment the image data and study their dependencies on molecular changes in the same individuals. Molecular profiling, combined with biophysical modeling of molecular assemblies associated with the disease, offer an opportunity to link the molecular pathway changes with cell- and tissue-level physiology and structure. Given that data acquired at different levels can carry complementary information about early Alzheimer's disease pathology, it is expected that their integration will improve early detection as well as our understanding of the disease

    Metabolic Modeling of Human Gut Microbiota on a Genome Scale: An Overview

    Get PDF
    There is growing interest in the metabolic interplay between the gut microbiome and host metabolism. Taxonomic and functional profiling of the gut microbiome by next-generation sequencing (NGS) has unveiled substantial richness and diversity. However, the mechanisms underlying interactions between diet, gut microbiome and host metabolism are still poorly understood. Genome-scale metabolic modeling (GSMM) is an emerging approach that has been increasingly applied to infer diet⁻microbiome, microbe⁻microbe and host⁻microbe interactions under physiological conditions. GSMM can, for example, be applied to estimate the metabolic capabilities of microbes in the gut. Here, we discuss how meta-omics datasets such as shotgun metagenomics, can be processed and integrated to develop large-scale, condition-specific, personalized microbiota models in healthy and disease states. Furthermore, we summarize various tools and resources available for metagenomic data processing and GSMM, highlighting the experimental approaches needed to validate the model predictions

    MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mass spectrometry (MS) coupled with online separation methods is commonly applied for differential and quantitative profiling of biological samples in metabolomic as well as proteomic research. Such approaches are used for systems biology, functional genomics, and biomarker discovery, among others. An ongoing challenge of these molecular profiling approaches, however, is the development of better data processing methods. Here we introduce a new generation of a popular open-source data processing toolbox, MZmine 2.</p> <p>Results</p> <p>A key concept of the MZmine 2 software design is the strict separation of core functionality and data processing modules, with emphasis on easy usability and support for high-resolution spectra processing. Data processing modules take advantage of embedded visualization tools, allowing for immediate previews of parameter settings. Newly introduced functionality includes the identification of peaks using online databases, MS<sup>n </sup>data support, improved isotope pattern support, scatter plot visualization, and a new method for peak list alignment based on the random sample consensus (RANSAC) algorithm. The performance of the RANSAC alignment was evaluated using synthetic datasets as well as actual experimental data, and the results were compared to those obtained using other alignment algorithms.</p> <p>Conclusions</p> <p>MZmine 2 is freely available under a GNU GPL license and can be obtained from the project website at: <url>http://mzmine.sourceforge.net/</url>. The current version of MZmine 2 is suitable for processing large batches of data and has been applied to both targeted and non-targeted metabolomic analyses.</p

    Perspectives on systems modeling of human peripheral blood mononuclear cells

    Get PDF
    Human peripheral blood mononuclear cells (PBMCs) are the key drivers of the immune responses. These cells undergo activation, proliferation and differentiation into various subsets. During these processes they initiate metabolic reprogramming, which is coordinated by specific gene and protein activities. PBMCs as a model system have been widely used to study metabolic and autoimmune diseases. Herein we review various omics and systems-based approaches such as transcriptomics, epigenomics, proteomics, and metabolomics as applied to PBMCs, particularly T helper subsets, that unveiled disease markers and the underlying mechanisms. We also discuss and emphasize several aspects of T cell metabolic modeling in healthy and disease states using genome-scale metabolic models.</p

    Lipidomes in health and disease: Analytical strategies and considerations

    Get PDF
    Lipidomics is a rapidly-growing field which focuses on global characterization of lipids at molecular and systems levels. As small changes in the concentrations of lipids may have important physiological consequences, much attention in the field has recently been paid to more accurate quantitation and identification of lipids. Community-wide efforts have been initiated, aiming to develop best practices for lipidomic analyses and reporting of lipidomic data. Nevertheless, current approaches for comprehensive analysis of lipidomes have some inherent challenges and limitations. Additionally, there is, currently, limited knowledge concerning the impacts of various external and internal exposures on lipid levels. In this review, we discuss the recent progress in lipidomics analysis, with a primary focus on analytical approaches, as well as on the different sources of variation in quantifying lipid levels, both technical and biological.</p

    Compartmentation of glycogen metabolism revealed from 13C isotopologue distributions

    Get PDF
    Background: Stable isotope tracers are used to assess metabolic flux profiles in living cells. The existing methods of measurement average out the isotopic isomer distribution in metabolites throughout the cell, whereas the knowledge of compartmental organization of analyzed pathways is crucial for the evaluation of true fluxes. That is why we accepted a challenge to create a software tool that allows deciphering the compartmentation of metabolites based on the analysis of average isotopic isomer distribution. Results: The software Isodyn, which simulates the dynamics of isotopic isomer distribution in central metabolic pathways, was supplemented by algorithms facilitating the transition between various analyzed metabolic schemes, and by the tools for model discrimination. It simulated 13C isotope distributions in glucose, lactate, glutamate and glycogen, measured by mass spectrometry after incubation of hepatocytes in the presence of only labeled glucose or glucose and lactate together (with label either in glucose or lactate). The simulations assumed either a single intracellular hexose phosphate pool, or also channeling of hexose phosphates resulting in a different isotopic composition of glycogen. Model discrimination test was applied to check the consistency of both models with experimental data. Metabolic flux profiles, evaluated with the accepted model that assumes channeling, revealed the range of changes in metabolic fluxes in liver cells. Conclusions: The analysis of compartmentation of metabolic networks based on the measured 13C distribution was included in Isodyn as a routine procedure. The advantage of this implementation is that, being a part of evaluation of metabolic fluxes, it does not require additional experiments to study metabolic compartmentation. The analysis of experimental data revealed that the distribution of measured 13C-labeled glucose metabolites is inconsistent with the idea of perfect mixing of hexose phosphates in cytosol. In contrast, the observed distribution indicates the presence of a separate pool of hexose phosphates that is channeled towards glycogen synthesis
    corecore