8 research outputs found

    Proceedings of the Thirteenth International Society of Sports Nutrition (ISSN) Conference and Expo

    Get PDF
    Meeting Abstracts: Proceedings of the Thirteenth International Society of Sports Nutrition (ISSN) Conference and Expo Clearwater Beach, FL, USA. 9-11 June 201

    Assessment of Magnetic Resonance Imaging Artifact Following Cervical Total Disc Arthroplasty.

    No full text
    BACKGROUND: Cervical disc arthroplasty has become a technique for the treatment of cervical degenerative disc disease. Clinically, the need to accurately assess the neural elements at the operative and adjacent levels is critical postoperatively. The purpose of this study was to quantitatively and qualitatively measure the amount of MRI artifact produced by various cervical total disc replacements. METHODS: T1 and T2-weighted turbo spin-echo MRI sequences were collected on the cervical spine (C2-T1) of a 68 year-old unembalmed male cadaver. A discectomy was performed at C5-6, followed by successive implantation of six different total disc replacements. The scans were quantitatively evaluated by three of the authors. The volume of artifact was measured using image analysis software. Qualitative analysis of the adjacent and index neural elements was performed. RESULTS: The artifact in the T2 weighted images was noted to be 58.6卤7.3 cm3 for Prestige ST, 14.2卤1.3 cm3 for ProDisc-C, 7.5卤0.8 cm3 for Discover, 8.0卤0.3 cm3 for Prestige LP, 6.6卤0.7 cm3 for Bryan, and 7.3卤0.6 cm3 for ProDisc-C titanium prototype. Acceptable intraobserver and excellent interobsever correlation was demonstrated using Pearson Correlation and Concordance Correlation Coefficient analysis. The adjacent and implanted level neural elements (spinal cord and neuroforamina) were easily visualized on the T2 weighted images after the implantation of titanium devices (ProDisc-C titanium prototype, Discover, Prestige LP and Bryan). After implantation of a cobalt chrome implant (ProDisc-C), the adjacent level neural elements were easily visualized but the implanted level could not be fully visualized due to distortion of the images. The quality of the distortion was least favorable after the implantation of the stainless steel implant (Prestige ST), where neither the adjacent nor the index level could be fully visualized. CONCLUSION: The volume of the artifact seen following cervical total disc arthroplasty is highly dependent upon the material property of the implant. Quantitative analysis described in this study demonstrated sufficiently low intraobserver and interobserver variability to be considered a reliable technique

    Leveraging the NEON Airborne Observation Platform for socio鈥恊nvironmental systems research

    No full text
    Abstract During the 21st century, human鈥揺nvironment interactions will increasingly expose both systems to risks, but also yield opportunities for improvement as we gain insight into these complex, coupled systems. Human鈥揺nvironment interactions operate over multiple spatial and temporal scales, requiring large data volumes of multi鈥恟esolution information for analysis. Climate change, land鈥恥se change, urbanization, and wildfires, for example, can affect regions differently depending on ecological and socioeconomic structures. The relative scarcity of data on both humans and natural systems at the relevant extent can be prohibitive when pursuing inquiries into these complex relationships. We explore the value of multitemporal, high鈥恉ensity, and high鈥恟esolution LiDAR, imaging spectroscopy, and digital camera data from the National Ecological Observatory Network鈥檚 Airborne Observation Platform (NEON AOP) for Socio鈥怑nvironmental Systems (SES) research. In addition to providing an overview of NEON AOP datasets and outlining specific applications for addressing SES questions, we highlight current challenges and provide recommendations for the SES research community to improve and expand its use of this platform for SES research. The coordinated, nationwide AOP remote sensing data, collected annually over the next 30聽yr, offer exciting opportunities for cross鈥恠ite analyses and comparison, upscaling metrics derived from LiDAR and hyperspectral datasets across larger spatial extents, and addressing questions across diverse scales. Integrating AOP data with other SES datasets will allow researchers to investigate complex systems and provide urgently needed policy recommendations for socio鈥恊nvironmental challenges. We urge the SES research community to further explore questions and theories in social and economic disciplines that might leverage NEON AOP data

    Advanced structural design for precision radial velocity instruments

    No full text
    The GMT-Consortium Large Earth Finder (G-CLEF) is an echelle spectrograph with precision radial velocity (PRV) capability that will be a first light instrument for the Giant Magellan Telescope (GMT). G-CLEF has a PRV precision goal of 40 cm/sec (10 cm/s for multiple measurements) to enable detection of Earth-like exoplanets in the habitable zones of sun-like stars'. This precision is a primary driver of G-CLEF's structural design. Extreme stability is necessary to minimize image motions at the CCD detectors. Minute changes in temperature, pressure, and acceleration environments cause structural deformations, inducing image motions which degrade PRV precision. The instrument's structural design will ensure that the PRV goal is achieved under the environments G-CLEF will be subjected to as installed on the GMT azimuth platform, including: Millikelvin (0.001 K) thermal soaks and gradients 10 millibar changes in ambient pressure Changes in acceleration due to instrument tip/tilt and telescope slewing Carbon fiber/cyanate composite was selected for the optical bench structure in order to meet performance goals. Low coefficient of thermal expansion (C 1E) and high stiffness-to-weight are key features of the composite optical bench design. Manufacturability and serviceability of the instrument are also drivers of the design. In this paper, we discuss analyses leading to technical choices made to minimize G-CLEF's sensitivity to changing environments. Finite element analysis (FEA) and image motion sensitivity studies were conducted to determine PRV performance under operational environments. We discuss the design of the optical bench structure to optimize stiffness to -weight and minimize deformations due to inertial and pressure effects. We also discuss quasi-kinematic mounting of optical elements and assemblies, and optimization of these to ensure minimal image motion under thermal, pressure, and inertial loads expected during PRV observations.SPIE grants to authors of papers published in an SPIE Journal or Proceedings the right to post an author-prepared version or an official version (preferred version) of the published paper on an internal or external server controlled exclusively by the author/employer, provided that (a) such posting is noncommercial in nature and the paper is made available to users without charge; (b) an appropriate copyright notice and full citation appear with the paper, and (c) a link to SPIE's official online version of the abstract is provided using the DOI (Document Object Identifier) link.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    The GMT-Consortium Large Earth Finder (G-CLEF): an optical Echelle spectrograph for the Giant Magellan Telescope (GMT)

    No full text
    The GMT-Consortium Large Earth Finder (G-CLEF) will be a cross-dispersed, optical band echelle spectrograph to be delivered as the first light scientific instrument for the Giant Magellan Telescope (GMT) in 2022. G-CLEF is vacuumenclosed and fiber-fed to enable precision radial velocity (PRV) measurements, especially for the detection and characterization of low-mass exoplanets orbiting solar-type stars. The passband of G-CLEF is broad, extending from 3500 angstrom to . This passband provides good sensitivity at blue wavelengths for stellar abundance studies and deep red response for observations of high-redshift phenomena. The design of G-CLEF incorporates several novel technical innovations. We give an overview of the innovative features of the current design. G-CLEF will be the first PRV spectrograph to have a composite optical bench so as to exploit that material's extremely low coefficient of thermal expansion, high in-plane thermal conductivity and high stiffness-to-mass ratio. The spectrograph camera subsystem is divided into a red and a blue channel, split by a dichroic, so there are two independent refractive spectrograph cameras. The control system software is being developed in model-driven software context that has been adopted globally by the GMT. G-CLEF has been conceived and designed within a strict systems engineering framework. As a part of this process, we have developed a analytical toolset to assess the predicted performance of G-CLEF as it has evolved through design phases.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Proceedings of the Thirteenth International Society of Sports Nutrition (ISSN) Conference and Expo

    No full text
    corecore