31 research outputs found

    Fusion of the 1H NMR data of serum, urine and exhaled breath condensate in order to discriminate chronic obstructive pulmonary disease and obstructive sleep apnea syndrome

    Get PDF
    Chronic obstructive pulmonary disease, COPD, affects the condition of the entire human organism and causes multiple comorbidities. Pathological lung changes lead to quantitative changes in the composition of the metabolites in different body fluids. The obstructive sleep apnea syndrome, OSAS, occurs in conjunction with chronic obstructive pulmonary disease in about 10–20 % of individuals who have COPD. Both conditions share the same comorbidities and this makes differentiating them difficult. The aim of this study was to investigate whether it is possible to diagnose a patient with either COPD or the OSA syndrome using a set of selected metabolites and to determine whether the metabolites that are present in one type of biofluid (serum, exhaled breath condensate or urine) or whether a combination of metabolites that are present in two biofluids or whether a set of metabolites that are present in all three biofluids are necessary to correctly diagnose a patient. A quantitative analysis of the metabolites in all three biofluid samples was performed using 1H NMR spectroscopy. A multivariate bootstrap approach that combines partial least squares regression with the variable importance in projection score (VIP-score) and selectivity ratio (SR) was adopted in order to construct discriminant diagnostic models for the groups of individuals with COPD and OSAS. A comparison study of all of the discriminant models that were constructed and validated showed that the discriminant partial least squares model using only ten urine metabolites (selected with the SR approach) has a specificity of 100 % and a sensitivity of 86.67 %. This model (AUCtest = 0.95) presented the best prediction performance. The main conclusion of this study is that urine metabolites, among the others, present the highest probability for correctly identifying patents with COPD and the lowest probability for an incorrect identification of the OSA syndrome as developed COPD. Another important conclusion is that the changes in the metabolite levels of exhaled breath condensates do not appear to be specific enough to differentiate between patients with COPD and OSA

    New Achievements in High-Pressure Processing to Preserve Human Milk Bioactivity

    Get PDF
    High-pressure processing (HPP) is a non-thermal technology that is being increasingly applied in food industries worldwide. It was proposed that this method could be used as an alternative to holder pasteurization (HoP; 62.5°C, 30 min) in milk banks but its impact on the immunologic, enzymatic and hormonal components of human milk has not yet been evaluated in detail. The aim of our study was to compare the effects of HPP in variants: (1) 600 MPa, 10 min (2) 100 MPa, 10 min, interval 10 min, 600 MPa, 10 min (3) 200 MPa, 10 min, interval 10 min, 400 MPa, 10 min (4) 200 MPa, 10 min, interval 10 min, 600 MPa, 10 min in temperature range 19–21°C and HoP on the leptin, adiponectin, insulin, hepatocyte growth factor (HGF), lactoferrin and IgG contents in human milk. HoP was done at the Regional Human Milk Bank in Warsaw at the Holy Family Hospital on S90 Eco pasteurizer (Sterifeed, Medicare Colgate Ltd). Apparatus U4000/65 (Unipress Equipment, Poland) was used for pascalization. Milk samples were obtained from women during 2–6 weeks of lactation. Post-treatment culture showed no endogenous bacterial contamination in any tested option. Concentrations of selected components were determined using ELISA tests. The level of all analyzed components were significantly decreased by HoP: leptin 77.86%, adiponectin 32.79%, insulin 32.40%, HGF 88.72%, lactoferrin 60.31@.%, IgG 49.04%. All HPP variants caused an increase in leptin concentration, respectively (1) 81.79% (2) 90.01% (3) 86.12% (4) 47.96%. Retention of insulin after HPP was (1) 88.20% (2) 81.98% (3) 94.76% (4) 90.31% HGF (1) 36.15% (2) 38.81% 97.15% (3) 97.15% (4) 43.02%, lactoferrin (1) 55.78% (2) 57.63% (3) 78.77% (4) 64.75%. Moreover, HPP variant as 200 + 400 MPa preserved IgG (82.24%) better than HoP and resulted not statistically significant change of adiponectin level (38.55%) compare to raw milk. Our results showed that HPP leads to preservation of adipokines, growth factor, and lactoferrin, IgG much better or comparable with HoP

    Glycosylation of mucins present in gastric juice: the effect of helicobacter pylori eradication treatment

    Get PDF
    It is suggested that gastric mucins, and in particular some specific glycan structures that can act as carbohydrate receptors, are involved in the interactions with Helicobacter pylori adhesins. The main aim of our study was to evaluate glycosylation pattern of glycoproteins of gastric juice before and at the end of eradication therapy. Gastric juices were taken from 13 clinical patients and subjected to analysis. Pooled fractions of the void volume obtained after gel filtration were subjected to ELISA tests. To assess the relative amounts of carbohydrate structures, lectins and monoclonal antibodies were used. Changes in the level of MUC 1 and MUC 5AC mucins and of carbohydrate structures, which are suggested to be receptors for Helicobacter pylori adhesins, were observed by the end of the eradication treatment. Our results support the idea about the involvement of MUC 5AC and MUC 1 with some specific sugar structures in the mechanism of Helicobacter pylori infection

    Polish Women Have Moderate Knowledge of Gestational Diabetes Mellitus and Breastfeeding Benefits

    No full text
    Gestational diabetes mellitus (GDM) is a multifaceted disease and is associated with complications for newborns and mothers. The aim of the study was to assess Polish women’s knowledge concerning GDM and their attitude to breastfeeding. As a research tool, an anonymous online survey that included 33 questions, grouped into three main sections—sociodemographic and obstetric variables, risk factors for GDM and neonatal adverse outcomes, and knowledge about breastfeeding—was used and administered online. A total of 410 women aged from 18 to 45 participated in this study. Based on the survey, it was demonstrated that the women had moderate knowledge concerning the maternal risk factors and adverse neonatal outcomes associated with GDM and, additionally, the short- and long-term effects of breastfeeding. Significantly deeper knowledge about GDM, including breastfeeding by GDM mothers, was observed among hyperglycemic mothers in comparison to normoglycemic mothers. However, knowledge concerning the health benefits of breastfeeding was not related to the mothers’ glycemic status. In conclusion, educational programs must include pre-pregnancy education of women and place emphasis on explaining the mechanism of development of GDM and the transformation of GDM to type 2 diabetes. This is crucial for changing the public’s perception of GDM as a temporary, reversible clinical entity

    Sialylated Oligosaccharides and Glycoconjugates of Human Milk. The Impact on Infant and Newborn Protection, Development and Well-Being

    No full text
    Human milk not only has nutritional value, but also provides a wide range of biologically active molecules, which are adapted to meet the needs of newborns and infants. Mother’s milk is a source of sialylated oligosaccharides and glycans that are attached to proteins and lipids, whose concentrations and composition are unique. Sialylated human milk glycoconjugates and oligosaccharides enrich the newborn immature immune system and are crucial for their proper development and well-being. Some of the milk sialylated oligosaccharide structures can locally exert biologically active effects in the newborn’s and infant’s gut. Sialylated molecules of human milk can be recognized and bound by sialic acid-dependent pathogens and inhibit their adhesion to the epithelial cells of newborns and infants. A small amount of intact sialylated oligosaccharides can be absorbed from the intestine and remain in the newborn’s circulation in concentrations high enough to modulate the immunological system at the cellular level and facilitate proper brain development during infancy. Conclusion: The review summarizes the current state of knowledge on sialylated human milk oligosaccharides and glycoconjugates, discusses the significance of sialylated structures of human milk in newborn protection and development, and presents the advantages of human milk over infant formula

    The Mother–Child Dyad Adipokine Pattern: A Review of Current Knowledge

    No full text
    An important role in the network of interconnections between the mother and child is played by adipokines, which are adipose tissue hormones engaged in the regulation of metabolism. Alternations of maternal adipokines translate to the worsening of maternal insulin resistance as well as metabolic stress, altered placenta functions, and fetal development, which finally contribute to long-term metabolic unfavorable conditions. This paper is the first to summarize the current state of knowledge concerning the concentrations of individual adipokines in different biological fluids of maternal and cord plasma, newborn/infant plasma, milk, and the placenta, where it highlights the impact of adverse perinatal risk factors, including gestational diabetes mellitus, preeclampsia, intrauterine growth restriction, preterm delivery, and maternal obesity on the adipokine patterns in maternal–infant dyads. The importance of adipokine measurement and relationships in biological fluids during pregnancy and lactation is crucial for public health in the area of prevention of most diet-related metabolic diseases. The review highlights the huge knowledge gap in the field of hormones participating in the energy homeostasis and metabolic pathways during perinatal and postnatal periods in the mother–child dyad. An in-depth characterization is needed to confirm if the adverse outcomes of early developmental programming might be modulated via maternal lifestyle intervention

    Lactoferrin and Immunoglobulin Concentrations in Milk of Gestational Diabetic Mothers

    No full text
    Gestational diabetes mellitus (GDM) is associated with an increased risk of having a high-care newborn and has an impact on maternal wellbeing. This study aimed to assess the effect of GDM on the lactoferrin (LF), secretory immunoglobulin A (SIgA), immunoglobulin G (IgG), and immunoglobulin M (IgM) concentrations in early colostrum, colostrum, and transitional milk samples of hyperglycemic (n = 53) and normoglycemic (n = 49) mothers using enzyme-linked immunosorbent assay (ELISA). The concentrations of milk lactoferrin and SIgA, but not IgG and IgM, from hyperglycemic and normoglycemic mothers, showed a similar negative correlation with lactation from the first to the fifteenth day. Apart from early colostral IgG, there were no differences in concentrations of LF and immunoglobulins in milk from hyperglycemic and normoglycemic mothers. For hyperglycemia compensated by diet (GDM G1) or insulin treatment (GDM G2), slight differences were seen for LF and IgG, but not for SIgA and IgM, during an early stage of lactation only. Early colostral IgG and colostral LF of insulin-treated mothers were higher (10.01 ± 4.48 mg/L and 11.50 ± 0.58 g/L, respectively) than for diet-control diabetic mothers (7.65 ± 5.67 mg/L and 8.05 ± 1.38 g/L, respectively). GDM of mothers does not have a significant impact on immunological quality of early milk
    corecore