57 research outputs found
Recovery of the herbaceous layer in the young silver birch and black alder stands that developed spontaneously after a forest fire
The studies, which were conducted in southern Poland, focused on the recovery of the herb layer in
17-year-old post-fire silver birch and black alder forests. Although both types of stands, which are of the same age, developed spontaneously, the alder stands occupied damper sites (with thicker A horizons that survived the fire) than those in the birch forests. We surveyed the migration rates of 44 woodland species, primarily ancient woodland indicators, into both forests and the potential differences in these rates depending on their moisture regime and the community type represented by unburned forests, which were treated as the source of the woodland species pool. Additionally, the role of local depressions with high humidity that were covered by post-fire alder woods in the colonization process, as well as species survivorship and recolonisation, were estimated. Woodland species showed diverse migration paces among the sites; most of them migrated faster on more fertile sites with a higher humidity. Small patches of post-fire alder woods contributed to the recolonisation process since many woodland species in the herb layer survived the fire due to its high humidity, which inhibited the intensity of the forest fire. The recovery of woodland species in post-fire woods is the combined effect of regeneration, which relies on autochthonic propagules, and secondary succession, which is based on allochthonic propagules. Local depressions, which provide
refuges for fire-sensitive, dispersal-limited species, contribute to their survivorship and thus to the successive
recovery of herbaceous layers after a fire
Taking sides? Aspect has limited influence on soil environment or litter decomposition in pan-European study of roadside verges
In addition to well-known effects on species ecophysiology, phenology, and distributions, climate change is widely predicted to impact essential ecosystem services such as decomposition and nutrient cycling. While temperature and soil moisture are thought to influence litter decomposition, elucidating consistent soil process responses to observed or predicted shifts in climate have proven difficult to evidence. Here we investigated how aspect (i.e., north-south orientation), a natural model for variation in soil temperature, influenced soil physico-chemical conditions and decomposition of two standardised litter types (Green tea and Rooibos teabags) in Pole-facing (PF) and Equator-facing (EF) roadside verges spanning a 3000 km and 27° latitudinal gradient across Europe. Despite average daily temperatures being 1.5 - 3.0 °C warmer on EF than PF slopes, there were only minor region-specific differences in initial soil physico-chemical conditions and short-term variation in litter decomposition (i.e., litter mass loss was higher in EF-verges for the first month of deployment only) associated with aspect. We conclude that previously observed differences in soil environments and the decomposition process associated with slope orientation, is largely litter or environment specific, although medium-term soil-decomposition in semi-natural grassland ecosystems may also be insensitive to the magnitude of temperature variation within the range predicted by the IPCC SSP1–2.6 emissions scenario. Nonetheless, consistent average and extreme temperature differences between adjacent PF- and EF-aspects along roadside verges provides a model system to explore exactly how resilient the soil environment and the micro-organisms responsible for decomposition, are to temperature variation
Soil seed bank responses to edge effects in temperate European forests
Aim The amount of forest edges is increasing globally due to forest fragmentation and land-use changes. However, edge effects on the soil seed bank of temperate forests are still poorly understood. Here, we assessed edge effects at contrasting spatial scales across Europe and quantified the extent to which edges can preserve the seeds of forest specialist plants. Location Temperate European deciduous forests along a 2,300-km latitudinal gradient. Time period 2018-2021. Major taxa studied Vascular plants. Methods Through a greenhouse germination experiment, we studied how edge effects alter the density, diversity, composition and functionality of forest soil seed banks in 90 plots along different latitudes, elevations and forest management types. We also assessed which environmental conditions drive the seed bank responses at the forest edge versus interior and looked at the relationship between the seed bank and the herb layer species richness. Results Overall, 10,108 seedlings of 250 species emerged from the soil seed bank. Seed density and species richness of generalists (species not only associated with forests) were higher at edges compared to interiors, with a negative influence of C : N ratio and litter quality. Conversely, forest specialist species richness did not decline from the interior to the edge. Also, edges were compositionally, but not functionally, different from interiors. The correlation between the seed bank and the herb layer species richness was positive and affected by microclimate. Main conclusions Our results underpin how edge effects shape species diversity and composition of soil seed banks in ancient forests, especially increasing the proportion of generalist species and thus potentially favouring a shift in community composition. However, the presence of many forest specialists suggests that soil seed banks still play a key role in understorey species persistence and could support the resilience of our fragmented forests
- …