94 research outputs found

    Identification of Genes Whose Expression Overlaps Age Boundaries and Correlates with Risk Groups in Paediatric and Adult Acute Myeloid Leukaemia

    Get PDF
    Few studies have compared gene expression in paediatric and adult acute myeloid leukaemia (AML). In this study, we have analysed mRNA-sequencing data from two publicly accessible databases: (1) National Cancer Institute's Therapeutically Applicable Research to Generate Effective Treatments (NCI-TARGET), examining paediatric patients, and (2) The Cancer Genome Atlas (TCGA), examining adult patients with AML. With a particular focus on 144 known tumour antigens, we identified STEAP1, SAGE1, MORC4, SLC34A2 and CEACAM3 as significantly different in their expression between standard and low risk paediatric AML patient subgroups, as well as between poor and good, and intermediate and good risk adult AML patient subgroups. We found significant differences in event-free survival (EFS) in paediatric AML patients, when comparing standard and low risk subgroups, and quartile expression levels of BIRC5, MAGEF1, MELTF, STEAP1 and VGLL4. We found significant differences in EFS in adult AML patients when comparing intermediate and good, and poor and good risk adult AML patient subgroups and quartile expression levels of MORC4 and SAGE1, respectively. When examining Kyoto Encyclopedia of Genes and Genomes (KEGG) (2016) pathway data, we found that genes altered in AML were involved in key processes such as the evasion of apoptosis (BIRC5, WNT1) or the control of cell proliferation (SSX2IP, AML1-ETO). For the first time we have compared gene expression in paediatric AML patients with that of adult AML patients. This study provides unique insights into the differences and similarities in the gene expression that underlies AML, the genes that are significantly differently expressed between risk subgroups, and provides new insights into the molecular pathways involved in AML pathogenesis

    Serum profiling identifies ibrutinib as a treatment option for young adults with B‐cell acute lymphoblastic leukaemia

    Get PDF
    Acute lymphoblastic leukaemia (ALL) is a haematological malignancy that is characterized by the uncontrolled proliferation of immature lymphocytes. 80% of cases occur in children where ALL is well understood and treated. However it has a devastating affects on adults, where multi-agent chemotherapy is the standard of care with allogeneic stem cell transplantation for those who are eligible. New treatments are required to extend remission and prevent relapse to improve patient survival rates. We used serum profiling to compare samples from presentation adult B-ALL patients with age- and sex-matched healthy volunteer (HV) sera and identified 69 differentially recognised antigens (P ≤ 0·02). BMX, DCTPP1 and VGLL4 showed no differences in transcription between patients and healthy donors but were each found to be present at higher levels in B-ALL patient samples than HVs by ICC. BMX plays a crucial role in the Bruton's Tyrosine Kinase (BTK) pathway which is bound by the BTK inhibitor, ibrutinib, suggesting adult B-ALL would also be a worthy target patient group for future clinical trials. We have shown the utility of proto-array analysis of B-ALL patient sera, predominantly from young adults, to help characterise the B-ALL immunome and identified a new target patient population for existing small molecule therapy

    Microbial Activity of Soil Following Steam Treatment

    Get PDF
    The effect of steam treatment on subsurface aerobic and anaerobic microbial communities was investigated using multiple microbial assays. Soil samples were gathered and analyzed prior to, one month after, and eight months after a five-month field pilot test of steam injection and extraction. Aerobic soil samples were analyzed by respirometry, plate counts, and direct microscopic counts. Anaerobic microbial activity was examined by monitoring methane generation in anaerobic microcosms with gas chromatography. Respirometry showed pre-steam CO2 production was consistent with natural attenuation, post-steam (one month) CO2 production was below detection, and post-steam (eight months) CO2 production was about half of pre-steam. Post-steam (one and eight month) plate counts were one to four orders of magnitude lower than the pre-steam samples. Direct microscopic counts showed post-steam (one and eight month) cell numbers were higher than the pre-steam counts, but based on plate counts these cells were mostly non-viable. Significant amounts of methane and hydrogen were generated from pre-steam anaerobic microcosms, but post-steam microcosms had no detectable methane, and only trace amounts of hydrogen. Terminal restriction fragment (TRF) analysis was performed to determine the diversity of the microbial community before and after steam treatment. Pre-steam TRF analysis showed distinct differences in the microbial communities above and below the smear zone. Post-steam TRF analyses were not possible because insufficient DNA could be extracted from the soil

    An Optimized Data Structure for High Throughput 3D Proteomics Data: mzRTree

    Get PDF
    As an emerging field, MS-based proteomics still requires software tools for efficiently storing and accessing experimental data. In this work, we focus on the management of LC-MS data, which are typically made available in standard XML-based portable formats. The structures that are currently employed to manage these data can be highly inefficient, especially when dealing with high-throughput profile data. LC-MS datasets are usually accessed through 2D range queries. Optimizing this type of operation could dramatically reduce the complexity of data analysis. We propose a novel data structure for LC-MS datasets, called mzRTree, which embodies a scalable index based on the R-tree data structure. mzRTree can be efficiently created from the XML-based data formats and it is suitable for handling very large datasets. We experimentally show that, on all range queries, mzRTree outperforms other known structures used for LC-MS data, even on those queries these structures are optimized for. Besides, mzRTree is also more space efficient. As a result, mzRTree reduces data analysis computational costs for very large profile datasets.Comment: Paper details: 10 pages, 7 figures, 2 tables. To be published in Journal of Proteomics. Source code available at http://www.dei.unipd.it/mzrtre

    Antigenic targets for the immunotherapy of acute myeloid leukaemia

    Get PDF
    One of the most promising approaches to preventing relapse is the stimulation of the body’s own immune system to kill residual cancer cells after conventional therapy has destroyed the bulk of the tumour. In acute myeloid leukaemia (AML), the high frequency with which patients achieve first remission, and the diffuse nature of the disease throughout the periphery, makes immunotherapy particularly appealing following induction and consolidation therapy, using chemotherapy, and where possible stem cell transplantation. Immunotherapy could be used to remove residual disease, including leukaemic stem cells from the farthest recesses of the body, reducing, if not eliminating, the prospect of relapse. The identification of novel antigens that exist at disease presentation and can act as targets for immunotherapy have also proved useful in helping us to gain a better understand of the biology that belies AML. It appears that there is an additional function of leukaemia associated antigens as biomarkers of disease state and survival. Here, we discuss these findings

    Application of the pMHC array to characterise tumour antigen specific T cell populations in leukaemia patients at disease diagnosis

    Get PDF
    Immunotherapy treatments for cancer are becoming increasingly successful, however to further improve our understanding of the T-cell recognition involved in effective responses and to encourage moves towards the development of personalised treatments for leukaemia immunotherapy, precise antigenic targets in individual patients have been identified. Cellular arrays using peptide-MHC (pMHC) tetramers allow the simultaneous detection of different antigen specific T-cell populations naturally circulating in patients and normal donors. We have developed the pMHC array to detect CD8+ T-cell populations in leukaemia patients that recognise epitopes within viral antigens (cytomegalovirus (CMV) and influenza (Flu)) and leukaemia antigens (including Per Arnt Sim domain 1 (PASD1), MelanA, Wilms’ Tumour (WT1) and tyrosinase). We show that the pMHC array is at least as sensitive as flow cytometry and has the potential to rapidly identify more than 40 specific T-cell populations in a small sample of T-cells (0.8–1.4 x 106). Fourteen of the twenty-six acute myeloid leukaemia (AML) patients analysed had T cells that recognised tumour antigen epitopes, and eight of these recognised PASD1 epitopes. Other tumour epitopes recognised were MelanA (n = 3), tyrosinase (n = 3) and WT1126-134 (n = 1). One of the seven acute lymphocytic leukaemia (ALL) patients analysed had T cells that recognised the MUC1950-958 epitope. In the future the pMHC array may be used provide point of care T-cell analyses, predict patient response to conventional therapy and direct personalised immunotherapy for patients

    New targets for therapy: antigen identification in adults with B-cell acute lymphoblastic leukaemia

    Get PDF
    Acute lymphoblastic leukaemia (ALL) in adults is a rare and difficult-to-treat cancer that is characterised by excess lymphoblasts in the bone marrow. Although many patients achieve remission with chemotherapy, relapse rates are high and the associated impact on survival devastating. Most patients receive chemotherapy and for those whose overall fitness supports it, the most effective treatment to date is allogeneic stem cell transplant that can improve overall survival rates in part due to a ‘graft-versus-leukaemia’ effect. However, due to the rarity of this disease, and the availability of mature B-cell antigens on the cell surface, few new cancer antigens have been identified in adult B-ALL that could act as targets to remove residual disease in first remission or provide alternative targets for escape variants if and when current immunotherapy strategies fail. We have used RT-PCR analysis, literature searches, antibody-specific profiling and gene expression microarray analysis to identify and prioritise antigens as novel targets for the treatment of adult B-ALL

    Gene Ontology curation of the blood-brain barrier to improve the analysis of Alzheimer's and other neurological diseases.

    Get PDF
    Funder: National Institute for Health Research University College London Hospitals Biomedical Research CentreThe role of the blood-brain barrier (BBB) in Alzheimer's and other neurodegenerative diseases is still the subject of many studies. However, those studies using high-throughput methods have been compromised by the lack of Gene Ontology (GO) annotations describing the role of proteins in the normal function of the BBB. The GO Consortium provides a gold-standard bioinformatics resource used for analysis and interpretation of large biomedical data sets. However, the GO is also used by other research communities and, therefore, must meet a variety of demands on the breadth and depth of information that is provided. To meet the needs of the Alzheimer's research community we have focused on the GO annotation of the BBB, with over 100 transport or junctional proteins prioritized for annotation. This project has led to a substantial increase in the number of human proteins associated with BBB-relevant GO terms as well as more comprehensive annotation of these proteins in many other processes. Furthermore, data describing the microRNAs that regulate the expression of these priority proteins have also been curated. Thus, this project has increased both the breadth and depth of annotation for these prioritized BBB proteins. Database URLhttps://www.ebi.ac.uk/QuickGO/

    Caffeine Consumption Contributes to Skin Intrinsic Fluorescence in Type 1 Diabetes.

    Get PDF
    Background: A variant (rs1495741) in the gene for the N-acetyltransferase 2 (NAT2) protein is associated with skin intrinsic fluorescence (SIF), a noninvasive measure of advanced glycation end products and other fluorophores in the skin. Because NAT2 is involved in caffeine metabolism, we aimed to determine whether caffeine consumption is associated with SIF and whether rs1495741 is associated with SIF independently of caffeine. Materials and Methods: SIF was measured in 1,181 participants with type 1 diabetes from the Epidemiology of Diabetes Interventions and Complications study. Two measures of SIF were used: SIF1, using a 375-nm excitation light-emitting diode (LED), and SIF14 (456-nm LED). Food frequency questionnaires were used to estimate mean caffeine intake. To establish replication, we examined a second type 1 diabetes cohort. Results: Higher caffeine intake was significantly associated with higher SIF1LED 375 nm[0.6, 0.2] (P=2×10−32) and SIF14LED 456 nm[0.4, 0.8] (P=7×10−31) and accounted for 4% of the variance in each after adjusting for covariates. When analyzed together, caffeine intake and rs1495741 both remained highly significantly associated with SIF1LED 375 nm[0.6, 0.2] and SIF14LED 456 nm[0.4, 0.8]. Mean caffeinated coffee intake was also positively associated with SIF1LED 375 nm[0.6, 0.2] (P=9×10−12) and SIF14LED 456 nm[0.4, 0.8] (P=4×10−12), but no association was observed for decaffeinated coffee intake. Finally, caffeine was also positively associated with SIF1LED 375 nm[0.6, 0.2] and SIF14LED 456 nm[0.4, 0.8] (P\u3c0.0001) in the replication cohort. Conclusions: Caffeine contributes to SIF. The effect of rs1495741 on SIF appears to be partially independent of caffeine consumption. Because SIF and coffee intake are each associated with cardiovascular disease, our findings suggest that accounting for coffee and/or caffeine intake may improve risk prediction models for SIF and cardiovascular disease in individuals with diabetes

    The Pharmacological Chaperone N-butyldeoxynojirimycin Enhances Enzyme Replacement Therapy in Pompe Disease Fibroblasts

    Get PDF
    In spite of the progress in the treatment of lysosomal storage diseases (LSDs), in some of these disorders the available therapies show limited efficacy and a need exists to identify novel therapeutic strategies. We studied the combination of enzyme replacement and enzyme enhancement by pharmacological chaperones in Pompe disease (PD), a metabolic myopathy caused by the deficiency of the lysosomal acid α-glucosidase. We showed that coincubation of Pompe fibroblasts with recombinant human α-glucosidase and the chaperone N-butyldeoxynojirimycin (NB-DNJ) resulted in more efficient correction of enzyme activity. The chaperone improved α-glucosidase delivery to lysosomes, enhanced enzyme maturation, and increased enzyme stability. Improved enzyme correction was also found in vivo in a mouse model of PD treated with coadministration of single infusions of recombinant human α-glucosidase and oral NB-DNJ. The enhancing effect of chaperones on recombinant enzymes was also observed in fibroblasts from another lysosomal disease, Fabry disease, treated with recombinant α-galactosidase A and the specific chaperone 1-deoxygalactonojirimycin (DGJ). These results have important clinical implications, as they demonstrate synergy between pharmacological chaperones and enzyme replacement. A synergistic effect of these treatments may result particularly useful in patients responding poorly to therapy and in tissues in which sufficient enzyme levels are difficult to obtain
    corecore