59 research outputs found
Recommended from our members
Classification of Animal Movement Behavior through Residence in Space and Time
Identification and classification of behavior states in animal movement data can be complex, temporally biased, time-intensive, scale-dependent, and unstandardized across studies and taxa. Large movement datasets are increasingly common and there is a need for efficient methods of data exploration that adjust to the individual variability of each track. We present the Residence in Space and Time (RST) method to classify behavior patterns in movement data based on the concept that behavior states can be partitioned by the amount of space and time occupied in an area of constant scale. Using normalized values of Residence Time and Residence Distance within a constant search radius, RST is able to differentiate behavior patterns that are time-intensive (e.g., rest), time & distance-intensive (e.g., area restricted search), and transit (short time and distance). We use grey-headed albatross (Thalassarche chrysostoma) GPS tracks to demonstrate RST’s ability to classify behavior patterns and adjust to the inherent scale and individuality of each track. Next, we evaluate RST’s ability to discriminate between behavior states relative to other classical movement metrics. We then temporally sub-sample albatross track data to illustrate RST’s response to less resolved data. Finally, we evaluate RST’s performance using datasets from four taxa with diverse ecology, functional scales, ecosystems, and data-types. We conclude that RST is a robust, rapid, and flexible method for detailed exploratory analysis and meta-analyses of behavioral states in animal movement data based on its ability to integrate distance and time measurements into one descriptive metric of behavior groupings. Given the increasing amount of animal movement data collected, it is timely and useful to implement a consistent metric of behavior classification to enable efficient and comparative analyses. Overall, the application of RST to objectively explore and compare behavior patterns in movement data can enhance our fine- and broad- scale understanding of animal movement ecology
Regional variability in diving physiology and behavior in a widely distributed air-breathing marine predator, the South American sea lion (Otaria byronia)
Our understanding of how air-breathing marine predators cope with environmental variability is limited by our inadequate knowledge of their ecological and physiological parameters. Because of their wide distribution along both coasts of the sub-continent, South American sea lions (Otaria byronia) provide a valuable opportunity to study the behavioral and physiological plasticity of a marine predator in different environments.We measured the oxygen stores and diving behavior of South American sea lions throughout most of its range, allowing us to demonstrate that diving ability and behavior vary across its range.We found no significant differences in mass-specific blood volumes of sea lions among field sites and a negative relationship between massspecific oxygen storage and size, which suggests that exposure to different habitats and geographical locations better explains oxygen storage capacities and diving capability in South American sea lions than body size alone. The largest animals in our study (individuals from Uruguay) were the shallowest and shortest duration divers, and had the lowest mass-specific total body oxygen stores, while the deepest and longest duration divers (individuals from southern Chile) had significantly larger mass-specific oxygen stores, despite being much smaller animals. Our study suggests that the physiology of airbreathing diving predators is not fixed, but that it can be adjusted, to a certain extent, depending on the ecological setting and or habitat. These adjustments can be thought of as a 'training effect': as the animal continues to push its physiological capacity through greater hypoxic exposure, its breath-holding capacity increases
The ethics of digital well-being: a multidisciplinary perspective
This chapter serves as an introduction to the edited collection of the same name, which includes chapters that explore digital well-being from a range of disciplinary perspectives, including philosophy, psychology, economics, health care, and education. The purpose of this introductory chapter is to provide a short primer on the different disciplinary approaches to the study of well-being. To supplement this primer, we also invited key experts from several disciplines—philosophy, psychology, public policy, and health care—to share their thoughts on what they believe are the most important open questions and ethical issues for the multi-disciplinary study of digital well-being. We also introduce and discuss several themes that we believe will be fundamental to the ongoing study of digital well-being: digital gratitude, automated interventions, and sustainable co-well-being
A weak scientific basis for gaming disorder: let us err on the side of caution
We greatly appreciate the care and thought that is evident in the 10 commentaries that discuss our debate paper, the
majority of which argued in favor of a formalized ICD-11 gaming disorder. We agree that there are some people
whose play of video games is related to life problems. We believe that understanding this population and the nature
and severity of the problems they experience should be a focus area for future research. However, moving from
research construct to formal disorder requires a much stronger evidence base than we currently have. The burden of
evidence and the clinical utility should be extremely high, because there is a genuine risk of abuse of diagnoses. We
provide suggestions about the level of evidence that might be required: transparent and preregistered studies, a better
demarcation of the subject area that includes a rationale for focusing on gaming particularly versus a more general
behavioral addictions concept, the exploration of non-addiction approaches, and the unbiased exploration of clinical
approaches that treat potentially underlying issues, such as depressive mood or social anxiety first. We acknowledge
there could be benefits to formalizing gaming disorder, many of which were highlighted by colleagues in their
commentaries, but we think they do not yet outweigh the wider societal and public health risks involved. Given the
gravity of diagnostic classification and its wider societal impact, we urge our colleagues at the WHO to err on the side
of caution for now and postpone the formalization
Data quality influences the predicted distribution and habitat of four southern-hemisphere albatross species
Few studies have assessed the influence of data quality on the predicted probability of occurrence and preferred habitat of marine predators. We compared results from four species distribution models (SDMs) for four southern-hemisphere albatross species, Buller’s (Thalassarche bulleri), Campbell (T. impavida), grey-headed (T. chrysostoma), and white-capped (T. steadi), based on datasets of differing quality, ranging from no location data to twice-daily locations of individual birds collected by geolocation devices. Two relative environmental suitability (RES) models were fit using minimum and maximum preferred and absolute values for each environmental variable based on (1) monthly 50% kernel density contours and background environmental data, and (2) primary literature or expert opinion. Additionally, two boosted regression tree (BRT) models were fit using (1) opportunistic sightings data, and (2) geolocation data from bird-borne electronic tags. Using model-specific threshold values, habitat was quantified for each species and model. Model variables included distance from land, bathymetry, sea surface temperature, and chlorophyll-a concentration. Results from both RES models and the BRT model fit with opportunistic sightings were compared to those from the BRT model fit using geolocation data to assess the influence of data quality on predicted occupancy and habitat. For all species, BRT models outperformed RES models. BRT models offer a predictive advantage over RES models by being able to identify relevant variables, incorporate environmental interactions, and provide spatially explicit estimates of model uncertainty. RES models resulted in larger, less refined areas of predicted habitat for all species. Our study highlights the importance of data quality in predicting the distribution and habitat of albatrosses and emphasises the need to consider the pros and cons associated with different levels of data quality when using SDMs to inform management decisions. Furthermore, we examine the overlap in preferred habitat predicted by each SDM with fishing effort. We discuss the influence of data quality on predicting the wide-scale distributions of pelagic seabirds and how these impacts could result in different protection measures
Quantifying annual spatial consistency in chick-rearing seabirds to inform important site identification
Animal tracking has afforded insights into patterns of space use in numerous species and thereby informed area-based conservation planning. A crucial consideration when estimating spatial distributions from tracking data is whether the sample of tracked animals is representative of the wider population. However, it may also be important to track animals in multiple years to capture changes in distribution in response to varying environmental conditions. Using GPS-tracking data from 23 seabird species, we assessed the importance of multi-year sampling for identifying important sites for conservation during the chick-rearing period, when seabirds are most spatially constrained. We found a high degree of spatial overlap among distributions from different years in most species. Multi-year sampling often captured a significantly higher portion of reference distributions (based on all data for a population) than sampling in a single year. However, we estimated that data from a single year would on average miss only 5 % less of the full distribution of a population compared to equal-sized samples collected across three years (min: −0.3 %, max: 17.7 %, n = 23). Our results suggest a key consideration for identifying important sites from tracking data is whether enough individuals were tracked to provide a representative estimate of the population distribution during the sampling period, rather than that tracking necessarily take place in multiple years. By providing an unprecedented multi-species perspective on annual spatial consistency, this work has relevance for the application of tracking data to informing the conservation of seabirds.Fundação para a Ciência e Tecnologia - FCT; ARNETinfo:eu-repo/semantics/publishedVersio
Mismatches in Scale Between Highly Mobile Marine Megafauna and Marine Protected Areas
Marine protected areas (MPAs), particularly large MPAs, are increasing in number and size around the globe in part to facilitate the conservation of marine megafauna under the assumption that large-scale MPAs better align with vagile life histories; however, this alignment is not well established. Using a global tracking dataset from 36 species across five taxa, chosen to reflect the span of home range size in highly mobile marine megafauna, we show most MPAs are too small to encompass complete home ranges of most species. Based on size alone, 40% of existing MPAs could encompass the home ranges of the smallest ranged species, while only \u3c 1% of existing MPAs could encompass those of the largest ranged species. Further, where home ranges and MPAs overlapped in real geographic space, MPAs encompassed \u3c 5% of core areas used by all species. Despite most home ranges of mobile marine megafauna being much larger than existing MPAs, we demonstrate how benefits from MPAs are still likely to accrue by targeting seasonal aggregations and critical life history stages and through other management techniques
Mismatches in Scale Between Highly Mobile Marine Megafauna and Marine Protected Areas
Marine protected areas (MPAs), particularly large MPAs, are increasing in number and size around the globe in part to facilitate the conservation of marine megafauna under the assumption that large-scale MPAs better align with vagile life histories; however, this alignment is not well established. Using a global tracking dataset from 36 species across five taxa, chosen to reflect the span of home range size in highly mobile marine megafauna, we show most MPAs are too small to encompass complete home ranges of most species. Based on size alone, 40% of existing MPAs could encompass the home ranges of the smallest ranged species, while only \u3c 1% of existing MPAs could encompass those of the largest ranged species. Further, where home ranges and MPAs overlapped in real geographic space, MPAs encompassed \u3c 5% of core areas used by all species. Despite most home ranges of mobile marine megafauna being much larger than existing MPAs, we demonstrate how benefits from MPAs are still likely to accrue by targeting seasonal aggregations and critical life history stages and through other management techniques
Causal Network Accounts Of Ill-being: Depression & Digital Well-being
Depression is a common and devastating instance of ill-being which deserves an account. Moreover, the ill-being of depression is impacted by digital technology: some uses of digital technology increase such ill-being while other uses of digital technology increase well-being. So a good account of ill-being would explicate the antecedents of depressive symptoms and their relief, digitally and otherwise. This paper borrows a causal network account of well-being and applies it to ill-being, particularly depression. Causal networks are found to provide a principled, coherent, intuitively plausible, and empirically adequate account of cases of depression in every-day and digital contexts. Causal network accounts of ill-being also offer philosophical, scientific, and practical utility. Insofar as other accounts of ill-being cannot offer these advantages, we should prefer causal network accounts of ill-being
Corporatised Identities ≠Digital Identities: Algorithmic Filtering on Social Media and the Commercialisation of Presentations of Self
Goffman’s (1959) dramaturgical identity theory requires modification when theorising about presentations of self on social media. This chapter contributes to these efforts, refining a conception of digital identities by differentiating them from ‘corporatised identities’. Armed with this new distinction, I ultimately argue that social media platforms’ production of corporatised identities undermines their users’ autonomy and digital well-being. This follows from the disentanglement of several commonly conflated concepts. Firstly, I distinguish two kinds of presentation of self that I collectively refer to as ‘expressions of digital identity’. These digital performances (boyd 2007) and digital artefacts (Hogan 2010) are distinct, but often confused. Secondly, I contend this confusion results in the subsequent conflation of corporatised identities – poor approximations of actual digital identities, inferred and extrapolated by algorithms from individuals’ expressions of digital identity – with digital identities proper. Finally, and to demonstrate the normative implications of these clarifications, I utilise MacKenzie’s (2014, 2019) interpretation of relational autonomy to propose that designing social media sites around the production of corporatised identities, at the expense of encouraging genuine performances of digital identities, has undermined multiple dimensions of this vital liberal value. In particular, the pluralistic range of authentic preferences that should structure flourishing human lives are being flattened and replaced by commercial, consumerist preferences. For these reasons, amongst others, I contend that digital identities should once again come to drive individuals’ actions on social media sites. Only upon doing so can individuals’ autonomy, and control over their digital identities, be rendered compatible with social media
- …