1,073 research outputs found

    Simple theory for spin-lattice relaxation in metallic rare earth ferromagnets

    Full text link
    The spin-lattice relaxation time Ď„SL\tau_{SL} is a key quantity both for the dynamical response of ferromagnets excited by laser pulses and as the speed limit of magneto-optical recording. Extending the theory for the electron paramagnetic resonance of magnetic impurities to spin-lattice relaxation in ferromagnetic rare earths we calculate Ď„SL\tau_{SL} for Gd and find a value of 48 ps in very good agreement with time-resolved spin-polarized photoemission experiments. We argue that the time scale for Ď„SL\tau_{SL} in metals is essentially given by the spin-orbit induced magnetocrystalline anisotropy energy.Comment: 18 pages revtex, 5 uuencoded figure

    Phonon-phonon interactions and phonon damping in carbon nanotubes

    Get PDF
    We formulate and study the effective low-energy quantum theory of interacting long-wavelength acoustic phonons in carbon nanotubes within the framework of continuum elasticity theory. A general and analytical derivation of all three- and four-phonon processes is provided, and the relevant coupling constants are determined in terms of few elastic coefficients. Due to the low dimensionality and the parabolic dispersion, the finite-temperature density of noninteracting flexural phonons diverges, and a nonperturbative approach to their interactions is necessary. Within a mean-field description, we find that a dynamical gap opens. In practice, this gap is thermally smeared, but still has important consequences. Using our theory, we compute the decay rates of acoustic phonons due to phonon-phonon and electron-phonon interactions, implying upper bounds for their quality factor.Comment: 15 pages, 2 figures, published versio

    Non-equivalence between Heisenberg XXZ spin chain and Thirring model

    Full text link
    The Bethe ansatz equations for the spin 1/2 Heisenberg XXZ spin chain are numerically solved, and the energy eigenvalues are determined for the anti-ferromagnetic case. We examine the relation between the XXZ spin chain and the Thirring model, and show that the spectrum of the XXZ spin chain is different from that of the regularized Thirring model.Comment: 10 pages. 2figure

    Anharmonic Decay of Vibrational States in Amorphous Silicon

    Full text link
    Anharmonic decay rates are calculated for a realistic atomic model of amorphous silicon. The results show that the vibrational states decay on picosecond timescales and follow the two-mode density of states, similar to crystalline silicon, but somewhat faster. Surprisingly little change occurs for localized states. These results disagree with a recent experiment.Comment: 10 pages, 4 Postscript figure

    Violation of the string hypothesis and Heisenberg XXZ spin chain

    Full text link
    In this paper we count the numbers of real and complex solutions to Bethe constraints in the two particle sector of the XXZ model. We find exact number of exceptions to the string conjecture and total number of solutions which is required for completeness.Comment: 15 pages, 7 Postscript figure

    Entangled Rings

    Get PDF
    Consider a ring of N qubits in a translationally invariant quantum state. We ask to what extent each pair of nearest neighbors can be entangled. Under certain assumptions about the form of the state, we find a formula for the maximum possible nearest-neighbor entanglement. We then compare this maximum with the entanglement achieved by the ground state of an antiferromagnetic ring consisting of an even number of spin-1/2 particles. We find that, though the antiferromagnetic ground state does not maximize the nearest-neighbor entanglement relative to all other states, it does so relative to other states having zero z-component of spin.Comment: 19 pages, no figures; v2 includes new results; v3 corrects a numerical error for the case N=

    Quantum Thermoactivation of Nanoscale Magnets

    Full text link
    The integral relaxation time describing the thermoactivated escape of a uniaxial quantum spin system interacting with a boson bath is calculated analytically in the whole temperature range. For temperatures T much less than the barrier height \Delta U, the level quantization near the top of the barrier and the strong frequency dependence of the one-boson transition probability can lead to the regularly spaced deep minima of the thermoactivation rate as a function of the magnetic field applied along the z axis.Comment: 4 pages, no figures, rejected from Phys. Rev. Let

    One-Liners

    Get PDF
    One liners from: N.M. Martinez-Rossi, C. Andrade-Monteiro and S.R.C. Pombeiro; M. Orbach ; H. Liu and TJ. Schmidhauser; P.A. Hubbard and C.H. Wilso

    Experimental evidence of a fractal dissipative regime in high-T_c superconductors

    Full text link
    We report on our experimental evidence of a substantial geometrical ingredient characterizing the problem of incipient dissipation in high-T_c superconductors(HTS): high-resolution studies of differential resistance-current characteristics in absence of magnetic field enabled us to identify and quantify the fractal dissipative regime inside which the actual current-carrying medium is an object of fractal geometry. The discovery of a fractal regime proves the reality and consistency of critical-phenomena scenario as a model for dissipation in inhomogeneous and disordered HTS, gives the experimentally-based value of the relevant finite-size scaling exponent and offers some interesting new guidelines to the problem of pairing mechanisms in HTS.Comment: 5 pages, 3 figures, RevTex; Accepted for publication in Physical Review B; (figures enlarged

    High frequency sound waves in vitreous silica

    Full text link
    We report a molecular dynamics simulation study of the sound waves in vitreous silica in the mesoscopic exchanged momentum range. The calculated dynamical structure factors are in quantitative agreement with recent experimental inelastic neutron and x-ray scattering data. The analysis of the longitudinal and transverse current spectra allows to discriminate between opposite interpretations of the existing experimental data in favour of the propagating nature of the high frequency sound waves.Comment: 4 pages, Revtex, 4 ps figures; to be published in Phys. Rev. Lett., February 198
    • …
    corecore