828 research outputs found

    Simple theory for spin-lattice relaxation in metallic rare earth ferromagnets

    Full text link
    The spin-lattice relaxation time τSL\tau_{SL} is a key quantity both for the dynamical response of ferromagnets excited by laser pulses and as the speed limit of magneto-optical recording. Extending the theory for the electron paramagnetic resonance of magnetic impurities to spin-lattice relaxation in ferromagnetic rare earths we calculate τSL\tau_{SL} for Gd and find a value of 48 ps in very good agreement with time-resolved spin-polarized photoemission experiments. We argue that the time scale for τSL\tau_{SL} in metals is essentially given by the spin-orbit induced magnetocrystalline anisotropy energy.Comment: 18 pages revtex, 5 uuencoded figure

    Spin glass dynamics through the lens of the coherence length

    Get PDF
    Spin glass coherence lengths can be extracted from experiment and from numerical simulations. They encompasses the correlated region, and their growth in time makes them a useful tool for exploration of spin glass dynamics. Because they play the role of a fundamental length scale, they control the transition from the reversible to the chaotic state. This review explores their use for spin glass properties, ranging from scaling laws to rejuvenation and memory

    Full Aging in Spin Glasses

    Full text link
    The discovery of memory effects in the magnetization decays of spin glasses in 1983 began a large effort to determine the exact nature of the decay. While qualitative arguments have suggested that the decay functions should scale as twt_{w}, the only time scale in the system, this type of scaling has not yet been observed. In this letter we report strong evidence for the scaling of the TRM magnetization decays as a function of twt_{w}. By varying the rate and the profile that the sample is cooled through its transition temperature to the measuring temperature, we find that the cooling plays a major role in determining scaling. As the effective cooling time decreases, ttw\frac {t}{t_{w}}scaling improves and for tceff<20st_{c}^{eff}<20s we find almost perfect ttw\frac{t}{t_{w}} scaling. We also find that subtraction of a stationary term from the magnetization decay has a small effect on the scaling but changes the form of the magnetization decay and improves overlap between curves produced with different twt_{w}.Comment: 4 pages, 3 figure

    Ultrafast demagnetization in the sp-d model: a theoretical study

    Full text link
    We propose and analyze a theoretical model of ultrafast light-induced magnetization dynamics in systems of localized spins that are coupled to carriers' spins by sp-d exchange interaction. A prominent example of a class of materials falling into this category are ferromagnetic (III,Mn)V semiconductors, in which ultrafast demagnetization has been recently observed. In the proposed model light excitation heats up the population of carriers, taking it out of equilibrium with the localized spins. This triggers the process of energy and angular momentum exchange between the two spin systems, which lasts for the duration of the energy relaxation of the carriers. We derive the Master equation for the density matrix of a localized spin interacting with the hot carriers and couple it with a phenomenological treatment of the carrier dynamics. We develop a general theory within the sp-d model and we apply it to the ferromagnetic semiconductors, taking into account the valence band structure of these materials. We show that the fast spin relaxation of the carriers can sustain the flow of polarization between the localized and itinerant spins leading to significant demagnetization of the localized spin system, observed in (III,Mn)V materials.Comment: 15 pages, 8 figure

    Phonon-phonon interactions and phonon damping in carbon nanotubes

    Get PDF
    We formulate and study the effective low-energy quantum theory of interacting long-wavelength acoustic phonons in carbon nanotubes within the framework of continuum elasticity theory. A general and analytical derivation of all three- and four-phonon processes is provided, and the relevant coupling constants are determined in terms of few elastic coefficients. Due to the low dimensionality and the parabolic dispersion, the finite-temperature density of noninteracting flexural phonons diverges, and a nonperturbative approach to their interactions is necessary. Within a mean-field description, we find that a dynamical gap opens. In practice, this gap is thermally smeared, but still has important consequences. Using our theory, we compute the decay rates of acoustic phonons due to phonon-phonon and electron-phonon interactions, implying upper bounds for their quality factor.Comment: 15 pages, 2 figures, published versio

    Anharmonic Decay of Vibrational States in Amorphous Silicon

    Full text link
    Anharmonic decay rates are calculated for a realistic atomic model of amorphous silicon. The results show that the vibrational states decay on picosecond timescales and follow the two-mode density of states, similar to crystalline silicon, but somewhat faster. Surprisingly little change occurs for localized states. These results disagree with a recent experiment.Comment: 10 pages, 4 Postscript figure

    On the Nature of Memory and Rejuvenation in Glassy Systems

    Full text link
    The memory effect in a single crystal spin glass (Cu0.92Mn0.08\mathrm{Cu}_{0.92}\mathrm{Mn}_{0.08}) has been measured using 1Hz1 \mathrm{Hz} ac susceptibility techniques over a reduced temperature range of 0.40.7Tg0.4 - 0.7 \, T_g and a model of the memory effect has been developed. A double-waiting-time protocol is carried out where the spin glass is first allowed to age at a temperature below TgT_g, followed by a second aging at a lower temperature after it has fully rejuvenated. The model is based on calculating typical coincidences between the growth of correlated regions at the two temperatures. It accounts for the absolute magnitude of the memory effect as a function of both waiting times and temperatures. The data can be explained by the memory loss being a function of the relative change in the correlated volume at the first waiting temperature because of the growth in the correlations at the second waiting temperature.Comment: 11 pages, 6 figure

    ‘Blindness to the obvious’?: Treatment experiences and feminist approaches to eating disorders

    Get PDF
    Eating disorders (EDs) are now often approached as biopsychosocial problems, but the social or cultural aspects of the equation are often marginalised in treatment - relegated to mere contributory or facilitating factors. In contrast, feminist and socio-cultural approaches are primarily concerned with the relationship between EDs and the social/ cultural construction of gender. Yet although such approaches emerged directly from the work of feminist therapists, the feminist scholarship has increasingly observed, critiqued and challenged the biomedical model from a scholarly distance. As such, this article draws upon data from 15 semi-structured interviews with women in the UK context who have experience of anorexia and/or bulimia in order to explore a series of interlocking themes concerning the relationship between gender identity and treatment. In engaging the women in debate about the feminist approaches (something which has been absent from previous feminist work), the article explores how gender featured in their own understandings of their problem, and the ways in which it was - or rather wasn’t - addressed in treatment. The article also explores the women’s evaluations of the feminist discourse, and their discussions of how it might be implemented within therapeutic and clinical contexts
    corecore