1,402 research outputs found

    Simple theory for spin-lattice relaxation in metallic rare earth ferromagnets

    Full text link
    The spin-lattice relaxation time τSL\tau_{SL} is a key quantity both for the dynamical response of ferromagnets excited by laser pulses and as the speed limit of magneto-optical recording. Extending the theory for the electron paramagnetic resonance of magnetic impurities to spin-lattice relaxation in ferromagnetic rare earths we calculate τSL\tau_{SL} for Gd and find a value of 48 ps in very good agreement with time-resolved spin-polarized photoemission experiments. We argue that the time scale for τSL\tau_{SL} in metals is essentially given by the spin-orbit induced magnetocrystalline anisotropy energy.Comment: 18 pages revtex, 5 uuencoded figure

    ESR and spin-lattice relaxation of Nd3+ in a metallic host: LaRh2

    Get PDF
    We report the first ESR observation of Nd3+ in a metal: cubic LaRh2. The resonance arises from a Γ6 ground state and exhibits hyperfine splitting at low temperature, allowing for positive identification. Above about 12 K, the ESR linewidth increases exponentially with temperature. We attribute this increase to the resonance phonon relaxation process involving the first excited state at 125±10 K

    Magnetocaloric Study of Spin Relaxation in `Frozen' Dipolar Spin Ice Dy2Ti2O7

    Full text link
    The magnetocaloric effect of polycrystalline samples of pure and Y-doped dipolar spin ice Dy2Ti2O7 was investigated at temperatures from nominally 0.3 K to 6 K and in magnetic fields of up to 2 T. As well as being of intrinsic interest, it is proposed that the magnetocaloric effect may be used as an appropriate tool for the qualitative study of slow relaxation processes in the spin ice regime. In the high temperature regime the temperature change on adiabatic demagnetization was found to be consistent with previously published entropy versus temperature curves. At low temperatures (T < 0.4 K) cooling by adiabatic demagnetization was followed by an irreversible rise in temperature that persisted after the removal of the applied field. The relaxation time derived from this temperature rise was found to increase rapidly down to 0.3 K. The data near to 0.3 K indicated a transition into a metastable state with much slower relaxation, supporting recent neutron scattering results. In addition, magnetic dilution of 50 % concentration was found to significantly prolong the dynamical response in the milikelvin temperature range, in contrast with results reported for higher temperatures at which the spin correlations are suppressed. These observations are discussed in terms of defects and loop correlations in the spin ice state.Comment: 9 figures, submitted to Phys. Rev.

    Coherent population trapping in ruby crystal at room temperature

    Full text link
    Observation of coherent population trapping (CPT) at ground-state Zeeman sublevels of Cr3+Cr^{3+}-ion in ruby is reported. The experiments are performed at room temperature by using both nanosecond optical pulses and nanosecond trains of ultrashort pulses. In both cases sharp drops in the resonantly induced fluorescence are detected as the external magnetic field is varied. Theoretical analysis of CPT in a transient regime due to pulsed action of optical pulses is presented.Comment: 4 pages, 4 figures, submitted to PR

    Anharmonic Decay of Vibrational States in Amorphous Silicon

    Full text link
    Anharmonic decay rates are calculated for a realistic atomic model of amorphous silicon. The results show that the vibrational states decay on picosecond timescales and follow the two-mode density of states, similar to crystalline silicon, but somewhat faster. Surprisingly little change occurs for localized states. These results disagree with a recent experiment.Comment: 10 pages, 4 Postscript figure

    ‘Blindness to the obvious’?: Treatment experiences and feminist approaches to eating disorders

    Get PDF
    Eating disorders (EDs) are now often approached as biopsychosocial problems, but the social or cultural aspects of the equation are often marginalised in treatment - relegated to mere contributory or facilitating factors. In contrast, feminist and socio-cultural approaches are primarily concerned with the relationship between EDs and the social/ cultural construction of gender. Yet although such approaches emerged directly from the work of feminist therapists, the feminist scholarship has increasingly observed, critiqued and challenged the biomedical model from a scholarly distance. As such, this article draws upon data from 15 semi-structured interviews with women in the UK context who have experience of anorexia and/or bulimia in order to explore a series of interlocking themes concerning the relationship between gender identity and treatment. In engaging the women in debate about the feminist approaches (something which has been absent from previous feminist work), the article explores how gender featured in their own understandings of their problem, and the ways in which it was - or rather wasn’t - addressed in treatment. The article also explores the women’s evaluations of the feminist discourse, and their discussions of how it might be implemented within therapeutic and clinical contexts

    Phonon-phonon interactions and phonon damping in carbon nanotubes

    Get PDF
    We formulate and study the effective low-energy quantum theory of interacting long-wavelength acoustic phonons in carbon nanotubes within the framework of continuum elasticity theory. A general and analytical derivation of all three- and four-phonon processes is provided, and the relevant coupling constants are determined in terms of few elastic coefficients. Due to the low dimensionality and the parabolic dispersion, the finite-temperature density of noninteracting flexural phonons diverges, and a nonperturbative approach to their interactions is necessary. Within a mean-field description, we find that a dynamical gap opens. In practice, this gap is thermally smeared, but still has important consequences. Using our theory, we compute the decay rates of acoustic phonons due to phonon-phonon and electron-phonon interactions, implying upper bounds for their quality factor.Comment: 15 pages, 2 figures, published versio

    Quantum Thermoactivation of Nanoscale Magnets

    Full text link
    The integral relaxation time describing the thermoactivated escape of a uniaxial quantum spin system interacting with a boson bath is calculated analytically in the whole temperature range. For temperatures T much less than the barrier height \Delta U, the level quantization near the top of the barrier and the strong frequency dependence of the one-boson transition probability can lead to the regularly spaced deep minima of the thermoactivation rate as a function of the magnetic field applied along the z axis.Comment: 4 pages, no figures, rejected from Phys. Rev. Let

    A miniprep procedure for isolating genomic DNA from Magnoporthe grisea

    Get PDF
    We have developed a simple miniprep procedure for the isolation of genomic DNA from the ascomycete Magnaporthe grisea. This pathogen of many grasses, including rice, has a moderate growth rate and produces intermediate to low numbers of conidia when grown in culture. Thus, in our previous DNA preparation procedure we inoculated swirling liquid cultures with mycelium that had been fragmented in a blender rather than with conidia. The mycelium obtained from these cultures was ground in liquid nitrogen for DNA extraction. Though the quantity and quality of DNA obtained by this method is satisfactory, the technique is too laborious for analysis of many strains. We developed the procedure described below to eliminate the need to fragment mycelium in a blender to inoculate cultures and to eliminate the need to grind mycelium in liquid nitrogen for DNA extraction. The new procedure, which relies on the enzymatic removal of cell walls and the lysis of protoplasts, should be readily adaptable to other filamentous fungi with growth characteristics similar to those of M. grisea

    Ultrafast demagnetization in the sp-d model: a theoretical study

    Full text link
    We propose and analyze a theoretical model of ultrafast light-induced magnetization dynamics in systems of localized spins that are coupled to carriers' spins by sp-d exchange interaction. A prominent example of a class of materials falling into this category are ferromagnetic (III,Mn)V semiconductors, in which ultrafast demagnetization has been recently observed. In the proposed model light excitation heats up the population of carriers, taking it out of equilibrium with the localized spins. This triggers the process of energy and angular momentum exchange between the two spin systems, which lasts for the duration of the energy relaxation of the carriers. We derive the Master equation for the density matrix of a localized spin interacting with the hot carriers and couple it with a phenomenological treatment of the carrier dynamics. We develop a general theory within the sp-d model and we apply it to the ferromagnetic semiconductors, taking into account the valence band structure of these materials. We show that the fast spin relaxation of the carriers can sustain the flow of polarization between the localized and itinerant spins leading to significant demagnetization of the localized spin system, observed in (III,Mn)V materials.Comment: 15 pages, 8 figure
    corecore