505 research outputs found

    Enhancing Team Performance for Long-Duration Space Missions

    Get PDF
    Success of exploration missions will depend on skilled performance by a distributed team that includes both the astronauts in space and Mission Control personnel. Coordinated and collaborative teamwork will be required to cope with challenging complex problems in a hostile environment. While thorough preflight training and procedures will equip creW'S to address technical problems that can be anticipated, preparing them to solve novel problems is much more challenging. This presentation will review components of effective team performance, challenges to effective teamwork, and strategies for ensuring effective team performance. Teamwork skills essential for successful team performance include the behaviors involved in developing shared mental models, team situation awareness, collaborative decision making, adaptive coordination behaviors, effective team communication, and team cohesion. Challenges to teamwork include both chronic and acute stressors. Chronic stressors are associated with the isolated and confined environment and include monotony, noise, temperatures, weightlessness, poor sleep and circadian disruptions. Acute stressors include high workload, time pressure, imminent danger, and specific task-related stressors. Of particular concern are social and organizational stressors that can disrupt individual resilience and effective mission performance. Effective team performance can be developed by training teamwork skills, techniques for coping with team conflict, intracrew and intercrew communication, and working in a multicultural team; leadership and teamwork skills can be fostered through outdoor survival training exercises. The presentation will conclude with an evaluation of the special requirements associated with preparing crews to function autonomously in long-duration missions

    Crew decision making under stress

    Get PDF
    Flight crews must make decisions and take action when systems fail or emergencies arise during flight. These situations may involve high stress. Full-missiion flight simulation studies have shown that crews differ in how effectively they cope in these circumstances, judged by operational errors and crew coordination. The present study analyzed the problem solving and decision making strategies used by crews led by captains fitting three different personality profiles. Our goal was to identify more and less effective strategies that could serve as the basis for crew selection or training. Methods: Twelve 3-member B-727 crews flew a 5-leg mission simulated flight over 1 1/2 days. Two legs included 4 abnormal events that required decisions during high workload periods. Transcripts of videotapes were analyzed to describe decision making strategies. Crew performance (errors and coordination) was judged on-line and from videotapes by check airmen. Results: Based on a median split of crew performance errors, analyses to date indicate a difference in general strategy between crews who make more or less errors. Higher performance crews showed greater situational awareness - they responded quickly to cues and interpreted them appropriately. They requested more decision relevant information and took into account more constraints. Lower performing crews showed poorer situational awareness, planning, constraint sensitivity, and coordination. The major difference between higher and lower performing crews was that poorer crews made quick decisions and then collected information to confirm their decision. Conclusion: Differences in overall crew performance were associated with differences in situational awareness, information management, and decision strategy. Captain personality profiles were associated with these differences, a finding with implications for crew selection and training

    Portraying the Contribution of Individual Behaviors to Team Cohesion and Performance

    Get PDF
    Behaviors of individuals in teams both contribute to and are molded by team dynamics. How they do so has been the subject of much research. A method of portraying individuals' behaviors in teams, the Team Diagramming Method (TDM) is presented. Behaviors are rated by other team members on three important dimensions: positivity/negativity, dominant/submissive, and task-orientedness/expressiveness. A study of 5-person teams engaging in a 3-day moon simulation task demonstrated that measures of these perceived behaviors as well as the variances of these behaviors correlated with cohesion measures and performance. The method shows strengths and weaknesses of particular teams and, by comparison with high-performing teams, suggests interventions based on individual as well as team behaviors. The primary goal of this study was to determine the extent to which these team level variables, derived from all team members' rated behaviors, were associated with previous methods of measuring cohesion and with performance. A secondary goal was to determine the stability of TDM measures over time by comparing team level variables based on ratings early and later in the team s work together

    Data Mine and Forget It?: A Cautionary Tale

    Get PDF
    With the development of new technologies, data mining has become increasingly popular. However, caution should be exercised in choosing the variables to include in data mining. A series of regression trees was created to demonstrate the change in the selection by the program of significant predictors based on the nature of variables

    Design of a cooperative problem-solving system for enroute flight planning: An empirical study of its use by airline dispatchers

    Get PDF
    In a previous report, an empirical study of 30 pilots using the Flight Planning Testbed was reported. An identical experiment using the Flight Planning Testbed (FPT), except that 27 airline dispatchers were studied, is described. Five general questions were addressed in this study: (1) under what circumstances do the introduction of computer-generated suggestions (flight plans) influence the planning behavior of dispatchers (either in a beneficial or adverse manner); (2) what is the nature of such influences (i.e., how are the person's cognitive processes changed); (3) how beneficial are the general design concepts underlying FPT (use of a graphical interface, embedding graphics in a spreadsheet, etc.); (4) how effective are the specific implementation decisions made in realizing these general design concepts; and (5) how effectively do dispatchers evaluate situations requiring replanning, and how effectively do they identify appropriate solutions to these situations

    Longitudinal analysis of extreme prematurity: a neuroimage investigation of early brain development

    Get PDF
    Brain development is a complex process, and disruptions from its normal course may affect the later neurological outcome of an individual. Preterm infants are at higher risk of disability, since a substantial part of brain development happens outside the mother’s womb, making it vulnerable to a range of insults. Understanding the early brain development during the preterm period is of critical importance and magnetic resonance imaging (MRI) allows us to investigate this. Methodologically, this is a challenging task, as classical approaches of studying longitudinal development over this period do not cope with the large changes taking place. This thesis focuses on the development of tools to study the changes in cortical folding, shape of different brain structures and microstructural changes over the preterm period from longitudinal data of extremely preterm-born infants. It describes a tissue segmentation pipeline, optimised on a postmortem fetal dataset, and then focuses on finding longitudinal correspondences between the preterm and termequivalent brain regions and structures in extremely preterm-born infants using MRI. Three novel registration techniques are proposed for longitudinal registration of this challenging data. These are based on matching the spectral components associated with either the cortical surfaces, diffusion tensor images, or both. These allow us to quantify longitudinal changes in different brain regions and structures. We investigated changes in cortical folding of different lobes, microstructural changes and tracts in the white matter, cortical thickness and changes in cortical fractional anisotropy and mean diffusivity. We used cortical surface registration to look at shape differences between controls and extremely preterm-born young adults to gain an insight into the long-term impact of prematurity. This research may contribute to the development of early biomarkers for predicting the neurological outcome of preterm infants and illuminate our understanding of brain development during this crucial period

    Longitudinal measurement of the developing grey matter in preterm subjects using multi-modal MRI.

    Get PDF
    Preterm birth is a major public health concern, with the severity and occurrence of adverse outcome increasing with earlier delivery. Being born preterm disrupts a time of rapid brain development: in addition to volumetric growth, the cortex folds, myelination is occurring and there are changes on the cellular level. These neurological events have been imaged non-invasively using diffusion-weighted (DW) MRI. In this population, there has been a focus on examining diffusion in the white matter, but the grey matter is also critically important for neurological health. We acquired multi-shell high-resolution diffusion data on 12 infants born at ≤28weeks of gestational age at two time-points: once when stable after birth, and again at term-equivalent age. We used the Neurite Orientation Dispersion and Density Imaging model (NODDI) (Zhang et al., 2012) to analyse the changes in the cerebral cortex and the thalamus, both grey matter regions. We showed region-dependent changes in NODDI parameters over the preterm period, highlighting underlying changes specific to the microstructure. This work is the first time that NODDI parameters have been evaluated in both the cortical and the thalamic grey matter as a function of age in preterm infants, offering a unique insight into neuro-development in this at-risk population

    Pilot/Controller Coordinated Decision Making in the Next Generation Air Transportation System

    Get PDF
    Introduction: NextGen technologies promise to provide considerable benefits in terms of enhancing operations and improving safety. However, there needs to be a thorough human factors evaluation of the way these systems will change the way in which pilot and controllers share information. The likely impact of these new technologies on pilot/controller coordinated decision making is considered in this paper using the "operational, informational and evaluative disconnect" framework. Method: Five participant focus groups were held. Participants were four experts in human factors, between x and x research students and a technical expert. The participant focus group evaluated five key NextGen technologies to identify issues that made different disconnects more or less likely. Results: Issues that were identified were: Decision Making will not necessarily improve because pilots and controllers possess the same information; Having a common information source does not mean pilots and controllers are looking at the same information; High levels of automation may lead to disconnects between the technology and pilots/controllers; Common information sources may become the definitive source for information; Overconfidence in the automation may lead to situations where appropriate breakdowns are not initiated. Discussion: The issues that were identified lead to recommendations that need to be considered in the development of NextGen technologies. The current state of development of these technologies provides a good opportunity to utilize recommendations at an early stage so that NextGen technologies do not lead to difficulties in resolving breakdowns in coordinated decision making
    corecore