

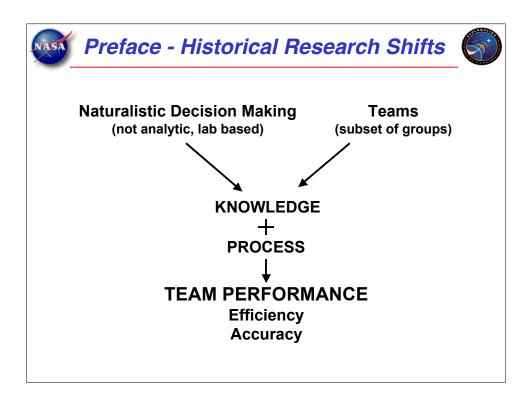
Enhancing Team Performance for Long-Duration Space Missions

Judith Orasanu, NASA Ames Research Center

ESA Technical Team Meeting on Human Performance in Space Operations

Paris, November 19-20, 2009

Exploration Missions: Unforgiving Isolated and Confined Environments, Stressors



NASA BHP Team Risk

- Risk of team performance decrements due to inadequate
 - Cooperation
 - Coordination
 - Communication
 - Psychosocial Adaptation
- · Potential issues in space
 - System failures in habitat
 - EVA gear
 - Health of crew: illness, injuries
 - Space threats
 - Psychosocial conflicts/tensions

I. Features of Effective Team Cognition

- Shared Mental Models
- Collaborative Decision Making
 - NDM
 - · Risk Assessment
 - · Metacognitive Strategies
 - Communication
- Teamwork
 - · Social processes
 - Cohesion

II. Challenges to Effective Team Cognition

- Limits of expertise
- Individual stress effects
- Sleep deprivation
- Interpersonal stresses
- Diversity factors

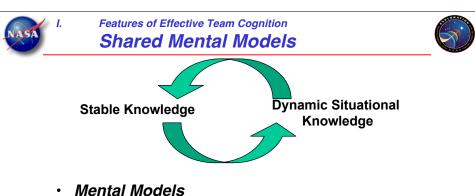
III. Supporting Effective Team Cognition

- Training
- Support tools

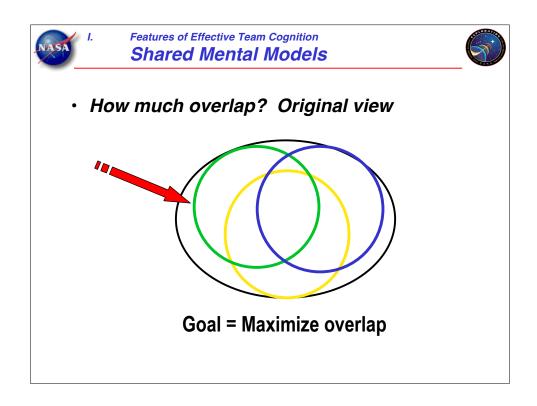
Features of Effective Team Cognition Some definitions

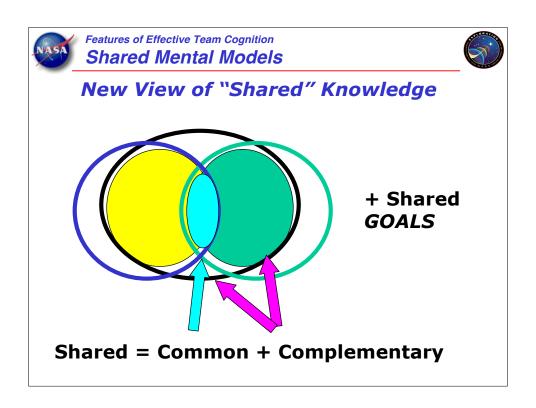
Teams: Two or more individuals with specified roles interacting adaptively, interdependently, and dynamically toward a common and valued goal. (Dyer, 1984; Salas, et al., 1992)

Coordination


- Tasks are largely procedural, with specific subtasks assigned to different members of the team. Often scripted contributions

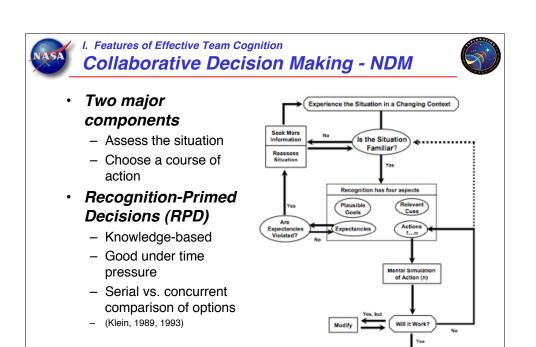
Collaboration

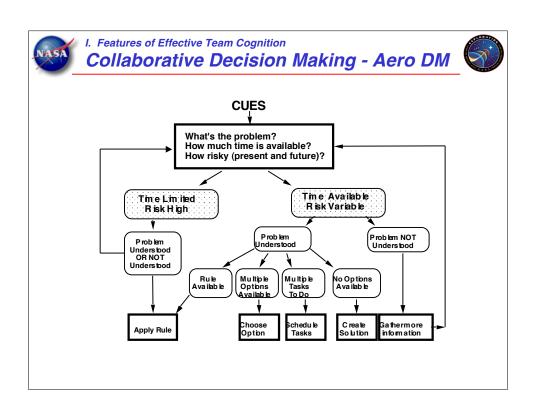

- Tasks are non-procedural. Contributions to joint problem solving, decision making or task completion involve unscripted contributions

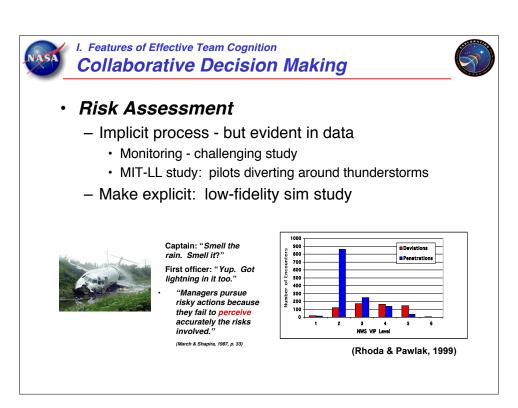

Cooperation

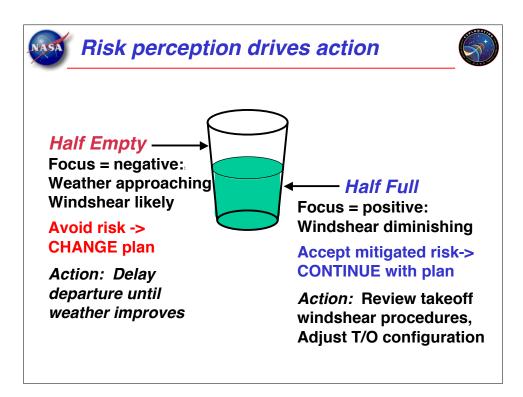
- Team orientation, motivation to work together as a team

- - Understand, explain, predict
 - Models for
 - System
 - Tasks
 - · Procedures including roles & responsibilities
 - · Teamwork interaction and coordination processes
 - · Individual team members







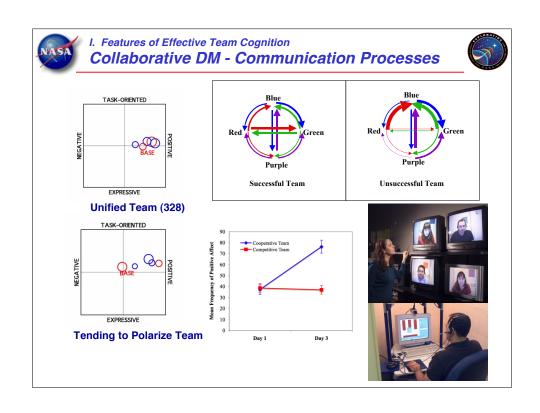


- · Needed to cope with unexpected events
 - E.g., UA 232, Apollo-13
- · Difficult events
 - Ambiguous cues
 - Dynamic conditions --> shifting goals
 - Uncertain outcomes
 - High workload
 - Time pressure

How Do Pilots Manage Risks?

All decisions aimed at PREVENTING LOSS while achieving GOALS

- AVOID safety risk
 - Delay takeoff or divert
- MITIGATE safety risk
 - Request priority handling to avoid fuel critical situation
- Prepare for worst case
 - Take precautions (e.g., review windshear procedures)


- Awareness of demands of situation + crew resources available to meet them
- · Core of ADAPTIVE processes
 - Critical to
 - · High workload situations
 - · Unfamiliar situations
 - · Ambiguous cues/incomplete information
 - · Uncertain outcomes
- · C.f. Cohen, Freeman & Wolf (1996)
 - Recognitional/Metacognitive training Mil C2

I. Features of Effective Team Cognition Collaborative DM - Communication Processes

- Taskwork
 - Share information explicit (build shared sit model)
 - Closed loop
 - Efficient: Grice's maxims
- Teamwork
 - Briefings
 - · CDR's intent, strategies, plans, contingencies
 - · Involve all crewmembers
 - Error correction (Monitoring/challenging)
 - · Maintain positive crew climate fix problem
 - Relational communication
 - · Important to cohesion
 - INDIRECT techniques to assess
 - C.f. EXEMSI (Cazes, Rosnet, Bachelard, Le Scanff, Rivolier (1996)

II. Threats to Effective Team Cognition

- · Evidence of poor team cognition?
 - Limits of Expertise (Dismukes, Berman & Loukopoulos, 2008)
 - · Unfamiliar problems
 - · Difficult situations: competing goals, no good options
 - · PCE Why?
 - Fail to update models
 - Poor team process
 - Monitoring-Challenging

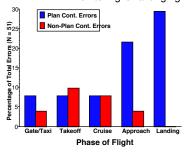


Table 2. Distribution of Error Types Across Original and

Present Datasets		
Error Category	% Total Errors	
Primary errors	1978-1990	1991-2000
	37accidents	14accidents
	302 errors	103 errors
Procedural - PR*	24.1	13.6
Tactical decision – TD	16.8	19.4
Aircraft handling - AH	15.2	11.6
Situation awareness –	5.9	13.6
SA*		
Systems operation - SO	4.6	7.8
Communication – CO	4.3	-
Resource management -	3.6	17.5
RM*		
Navigational - NV	1.9	
Secondary errors		
Monitoring & challenging	22.8	16.5
- MC		
* 0.005		

* x < 0.025



II. Threats to Effective Team Cognition

Inherent in Distributed Teams

- Alternative perspectives
 - · Differences in goals, risk perception, expertise
 - · Pilots ATC
 - Risk perception and action
 - Breakdowns (Bearman et al., 2005; in press)
 - » Informational, Operational, Cognitive

II. Threats to Effective Team Cognition Individual stressors

· Individual stressors

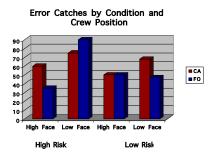
- Loss of cognitive resource
- Focus shifts to own highest priority Lose team orientation
 - · Driskell & Salas

Sleep deprivation

- Indirect cognitive effects rel to DM
 - · Information updating failures
 - · Underweight new information
 - · Rigidity loss of cognitive flexibility
 - · Degrades mood
- Affects communication
 - · Less task-relevant information transferred
 - · Less discussion of strategies
 - · Comprehension degrades
 - Simplified vocabulary pronominalization
 - "How's IT coming along up there?"

II. Threats to Effective Team Cognition

· Interpersonal stress - conflict


- Failures to monitor each other, back up, correct errors
- Reduced information sharing
- Withdraw social / emotional support
- Lose team orientation

· Social pressures

- Status, face
 - B-747 study
 - · USS Greeneville sinks Ehe

· Diversity pressures

- SFINCSS
- Mt. Everest

III. Supporting Effective Team Collaboration

Training

- Turn a TEAM of EXPERTS into an EXPERT TEAM
 - · Self-managing, adaptive, flexible
- Integrate TEAMWORK training w/ TECHNICAL
- TEM = Threat and Error Management
 - · Updated CRM
- Validated Approaches
 - TACT (Team Adaptation and Coordination Training)
 - · TDT (Team Dimensional Training
 - · Cross-Training
 - · Interpersonal Training
 - · Team Development (cohesion)
 - · Multicultural
- Meta-analysis of training approaches: Salas, DiazGranados, Klein, Burke, Stagl, Goodwin, & Halpin (2008)
 - · Pos effects on team cognition, affect, process and performance

III.

Supporting Effective Team Collaboration TACT, TDT

- TACT (Serfaty, Entin, & Johnson, 1998)
 - Adjust coordination and communication strategies to maintain successful task performance under high WL and time pressure
 - Grounded in
 - · Shared situation models
 - · Team metacognition
 - Mutual team models of interacting team members' tasks and abilities, including stress and WL
 - Generate shared expectations for how situation will evolve
 - Reduce communication overhead
 - · Implicit coordination
 - · Anticipation ratio of information sharing/requested info

III. Supporting Effective Team Collaboration TACT, TDT

- TDT (Smith-Jentsch, Zeisig, Acton & McPherson, 1998)
- · Similar to TACT but --
- Team self-diagnosis, correction and debriefing skills
- Four dimensions
 - Information exchange
 - Communication
 - Backup (supporting behaviors)
 - Initiative/leadership
- Validation study
 - More accurate teamwork MM
 - More effective outcomes

Supporting Effective Team Collaboration Cross-Training

· Important for LD space missions

- Limited number of crew
- Cover if one member is disabled

Rotate positions in training

- Taskwork vs. teamwork training

Most critical when

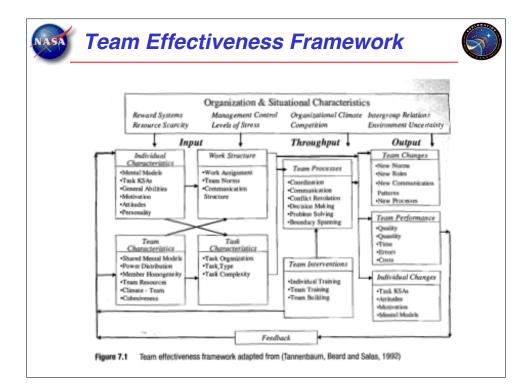
- High team WL
- Tasks must be reallocated
- Contributes to implicit coordination
 (Cannon-Bowers, Salas, Blickensderfer & Bowers, 1998)

· Measuring Team Knowledge

- Teamwork training develops best in context of Taskwork training
- Full cross-training better than conceptual cross-training (Cooke, Kiekel, Salas, Stout, Bowers, & Cannon-Bowers, 2003)

III. Supporting Effective Team Collaboration Interpersonal Skills, Team Building

Fosters cohesion


- Working with others
- Leadership
- Positive communication
- Conflict management

Evaluation - business environments

 Meta-analysis: IST had greatest benefits to productivity, cohesion, morale, job satisfaction

BUT other meta-analysis

- Team development/affect = most difficult to impact
- Compared IST w/other training approaches: TACT etc.
- Do NOT have good understanding of how to develop cohesion
 - · Hint: Transformational Leadership is key

III. Supporting Effective Team Collaboration **Technology Supports**

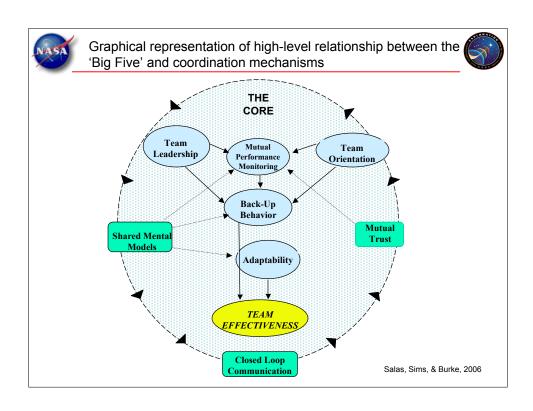
Distributed teams

- Locally distributed (within space crews)
- Crew ground (no time lag)
- Crew ground (time lag)

Face-to-face vs. Video vs. Audio

- Maintain team SA and collaboration
- Face to Face (F2F)
 - · Understand others' actions, intentions
 - Computer-mediated = F2F for idea-generation
 - · Lack of F2F
 - Difficulty in establishing conventions
 - Neg impact on performance on complex tasks / judgments
- Video
 - · Facilitates problem solving vs. email
 - · Contributes to cohesion among distributed team members
- Audio, Email
 - · OK when no time restrictions
 - · OK when onboard info is adequate

Supporting Effective Team Collaboration **Technology Supports**


· Asynchronous collaboration

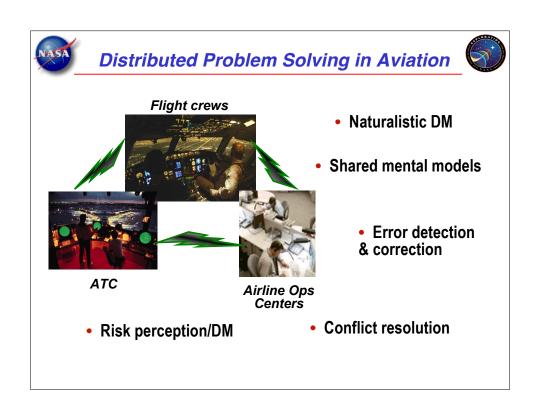
(Krauss & Bricker, 1966; Kraut, Fussell, Brennan & Siegel, 2002)

- Time lags in Mars communication
- Even small delays affect establishment of common ground
- Requires more explicit message formulation
- Reduces efficiency, especially w/complex problem

Autonomous crew performance

- Requires onboard information systems
 - · Easily searchable data architectures
 - · Access to relevant systems data
 - · Simplified procedures
 - · Support medical care
- On-board countermeasures
 - · Psychosocial support
 - · Conflict management

- I look forward to your input
- Judith.Orasanu@nasa.gov


We all THANK YOU!

Happy campers

