523 research outputs found

    Neutrino kinetics in a magnetized dense plasma

    Get PDF
    The relativistic kinetic equations (RKE) for lepton plasma in the presence of a strong external magnetic field are derived in Vlasov approximation. The new RKE for the electron spin distribution function includes the weak interaction with neutrinos originated by the axial vector current (cA\sim c_A) and provided by the parity nonconservation. In a polarized electron gas Bloch equation describing the evolution of the magnetization density perturbation is derived from the electron spin RKE being modified in the presence of neutrino fluxes. Such modified hydrodynamical equation allows to obtain the new dispersion equation in a magnetized plasma from which the neutrino driven instability of spin waves can be found. It is shown that this instability is more efficient e.g. in a magnetized supernova than the analogous one for Langmuir waves enhanced in an isotropic plasma.Comment: 20 pages, no figures, added subsection 2.3 about the lepton current conservation, to be published in Astroparticle Physic

    Alfven Wave Generation by means of High Orbital Injection of Barium Cloud in Magnetosphere

    Full text link
    An analysis of the Alfven wave generation associated with the barium vapor release at altitudes ~ 5.2 Earth's radii (ER) in the magnetosphere is presented. Such injections were executed in G-8 and G-10 experiments of the Combined Radiation and Radiation Effects Satellite (CRRES) mission. It is shown that the generation of Alfven waves is possible during the total time of plasma expansion. The maximum intensity of these waves corresponds to the time of complete retardation of the diamagnetic cavity created by the expansion of plasma cloud. The Alfven wave exhibits a form of an impulse with an effective frequency ~ 0.03-0.05 Hz. Due to the background conditions and wave frequency, the wave mainly oscillates along the geomagnetic field between the mirror reflection points situated at ~ 0.7 ER. The wave amplitude is sufficient to the generation of plasma instabilities and longitudinal electric field, and to an increase in the longitudinal energy of electrons to ~ 1 keV. These processes are the most probable for altitudes ~ 1 ER. The auroral kilometric radiation (AKR) at frequencies ~ 100 kHz is associated with these accelerated electrons. The acceleration of electrons and AKR can be observed almost continuously during the first minute and then from time to time with pauses about 35-40 s till 6-8 min after the release. The betatron acceleration of electrons at the recovery of the geomagnetic field is also discussed. This mechanism could be responsible for the acceleration of electrons resulting in the aurorae and ultra short radio wave storm at frequencies 50-300 MHz observed at the 8-10th min after the release.Comment: Presented at COSPAR 200

    Eigenoscillations of the Differentially Rotating Sun: I. 22-year, 4000-year, and quasi-biennial modes

    Get PDF
    Retrograde waves with frequencies much lower than the rotation frequency become trapped in the solar radiative interior. The eigenfunctions of the compressible, nonadiabatic, Rossby-like modes (ϵ\epsilon-mechanism and radiative losses taken into account) are obtained by an asymptotic method assuming a very small latitudinal gradient of rotation, without an arbitrary choice of other free parameters. An integral dispersion relation for the complex eigenfrequencies is derived as a solution of the boundary value problem. The discovered resonant cavity modes (called R-modes) are fundamentally different from the known r-modes: their frequencies are functions of the solar interior structure, and the reason for their existence is not related to geometrical effects. The most unstable R-modes are those with periods of 1--3 yr, 18--30 yr, and 1500--20000 yrs; these three separate period ranges are known from solar and geophysical data. The growing times of those modes which are unstable with respect to the ϵ\epsilon-mechanism are 102,103,\approx 10^2, 10^3, and 10510^5 years, respectively. The amplitudes of the R-modes are growing towards the center of the Sun. We discuss some prospects to develop the theory of R-modes as a driver of the dynamics in the convective zone which could explain, e.g., observed short-term fluctuations of rotation, a control of the solar magnetic cycle, and abrupt changes of terrestrial climate in the past.Comment: 17 pages, 6 figures, To appear in Astronomy and Astrophysic

    Discrete Imaging Models for Three-Dimensional Optoacoustic Tomography using Radially Symmetric Expansion Functions

    Full text link
    Optoacoustic tomography (OAT), also known as photoacoustic tomography, is an emerging computed biomedical imaging modality that exploits optical contrast and ultrasonic detection principles. Iterative image reconstruction algorithms that are based on discrete imaging models are actively being developed for OAT due to their ability to improve image quality by incorporating accurate models of the imaging physics, instrument response, and measurement noise. In this work, we investigate the use of discrete imaging models based on Kaiser-Bessel window functions for iterative image reconstruction in OAT. A closed-form expression for the pressure produced by a Kaiser-Bessel function is calculated, which facilitates accurate computation of the system matrix. Computer-simulation and experimental studies are employed to demonstrate the potential advantages of Kaiser-Bessel function-based iterative image reconstruction in OAT

    Photons Plus Ultrasound: Imaging and Sensing

    Get PDF
    Imaging and sensing based on fusing the compelling features of optical and ultrasonic waves is the fastest growing area of research in biomedical optics. The annual SPIE conference on this topic, co-chaired by both of us, has been doubling in size approximately every three years since 2003 (Fig. 1). As of 2009, this conference has become the largest at SPIE Photonics West. Hybrid modalities such as photoacoustic or optoacoustic tomography can provide deep tissue penetration, high ultrasonic resolution, and speckle-free optical contrast. Applications include in vivo functional and molecular imaging of cancer, neurophysiology, and vascular disease in both animals and humans. Major challenges include development of quantitative imaging, improvement of contrast and resolution, and commercialization of the technology. We look forward to seeing significant preclinical and clinical impact from this emerging technology

    Photoacoustic imaging based on MEMS mirror scanning

    Get PDF
    A microelectromechanical systems (MEMS)-based photoacoustic imaging system is reported for the first time. In this system, the MEMS-based light scanning subsystem and a ring-shaped polyvinylidene fluoride (PVDF) transducer are integrated into a miniaturized probe that is capable of three-dimensional (3D) photoacoustic imaging. It is demonstrated that the imaging system is able to image small objects embedded in phantom materials and in chicken and to in vivo visualize blood vessels under the skin of a human hand

    Electromagnetic effects of neutrinos in an electron gas

    Full text link
    We study the electromagnetic properties of a system that consists of an electron background and a neutrino gas that may be moving or at rest, as a whole, relative to the background. The photon self-energy for this system is characterized by the usual transverse and longitudinal polarization functions, and two additional ones which are the focus of our calculations, that give rise to birefringence and anisotropic effects in the photon dispersion relations. Expressions for them are obtained, which depend on the neutrino number densities and involve momentum integrals over the electron distribution functions, and are valid for any value of the photon momentum and general conditions of the electron gas. Those expressions are evaluated explicitly for several special cases and approximations which are generally useful in astrophysical and cosmological settings. Besides studying the photon dispersion relations, we consider the macroscopic electrodynamic equations for this system, which involve the standard dielectric and permeability constants plus two additional ones related to the photon self-energy functions. As an illustration, the equations are used to discuss the evolution of a magnetic field perturbation in such a medium. This particular phenomena has also been considered in a recent work by Semikoz and Sokoloff as a mechanism for the generation of large-scale magnetic fields in the Early Universe as a consequence of the neutrino-plasma interactions, and allows us to establish contact with a specific application in a well defined context, with a broader scope and from a very different point of view.Comment: Revtex 20 page
    corecore