167 research outputs found
Polarisation Patterns and Vectorial Defects in Type II Optical Parametric Oscillators
Previous studies of lasers and nonlinear resonators have revealed that the
polarisation degree of freedom allows for the formation of polarisation
patterns and novel localized structures, such as vectorial defects. Type II
optical parametric oscillators are characterised by the fact that the
down-converted beams are emitted in orthogonal polarisations. In this paper we
show the results of the study of pattern and defect formation and dynamics in a
Type II degenerate optical parametric oscillator for which the pump field is
not resonated in the cavity. We find that traveling waves are the predominant
solutions and that the defects are vectorial dislocations which appear at the
boundaries of the regions where traveling waves of different phase or
wave-vector orientation are formed. A dislocation is defined by two topological
charges, one associated with the phase and another with the wave-vector
orientation. We also show how to stabilize a single defect in a realistic
experimental situation. The effects of phase mismatch of nonlinear interaction
are finally considered.Comment: 38 pages, including 15 figures, LATeX. Related material, including
movies, can be obtained from
http://www.imedea.uib.es/Nonlinear/research_topics/OPO
Intermediate water links to Deep Western Boundary Current variability in the subtropical NW Atlantic during marine isotope stages 5 and 4
Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 22 (2007): PA3209, doi:10.1029/2006PA001409.Records from Ocean Drilling Program Sites 1057 and 1059 (2584 m and 2985 m water depth, respectively) have been used to reconstruct the behavior of the Deep Western Boundary Current (DWBC) on the Blake Outer Ridge (BOR) from 130 to 60 kyr B.P. (marine isotope stage (MIS) 5 and the 5/4 transition). Site 1057 lies within Labrador Sea Water (LSW) but close to the present-day boundary with Lower North Atlantic Deep Water (LNADW), while Site 1059 lies within LNADW. High-resolution sortable silt mean (inline equation) grain size and benthic δ 13C records were obtained, and changes in the DWBC intensity and spatial variability were inferred. Comparisons are made with similar proxy records generated for the Holocene from equivalent depth cores on the BOR. During MIS 5e, inline equation evidence at Site 1057 suggests slower relative flow speeds consistent with a weakening and a possible shoaling of the LSW-sourced shallower limb of the DWBC that occupies these depths today. In contrast, the paleocurrent record from the deeper site suggests that the fast flowing deep core of the DWBC was located close to its modern depth below 3500 m. During this interval the benthic δ 13C suggests little chemical stratification of the water column and the presence of a near-uniform LNADW-dominated water mass. After ∼111 kyr B.P. the inline equation record at Site 1057 increases to reach values similar to Site 1059 for the rest of MIS 5. The strengthening of flow speeds at the shallow site may correspond to the initiation of Glacial North Atlantic Intermediate Water formation also suggested by a divergence in the benthic δ 13C records with Site 1057 values increasing to ∼1.2‰. Coupled suborbital oscillations in DWBC flow variability and paleohydrography persisted throughout MIS 5. Comparison of these data with planktonic δ 18O records from the sites and alkenone-derived sea surface temperature (SST) estimates from the nearby Bermuda Rise suggest a hitherto unrecognized degree of linkage between oscillations in subtropical North Atlantic SST and DWBC flow.This work was funded by the United
Kingdom Natural Environment Research Council and supported by the
NERC Radiocarbon Laboratory
Spatial correlations in hexagons generated via a Kerr nonlinearity
We consider the hexagonal pattern forming in the cross-section of an optical
beam produced by a Kerr cavity, and we study the quantum correlations
characterizing this structure. By using arguments related to the symmetry
broken by the pattern formation, we identify a complete scenario of six-mode
entanglement. Five independent phase quadratures combinations, connecting the
hexagonal modes, are shown to exhibit sub-shot-noise fluctuations. By means of
a non-linear quantum calculation technique, quantum correlations among the mode
photon numbers are demonstrated and calculated.Comment: ReVTeX file, 20 pages, 7 eps figure
Dynamics of localized structures in vector waves
Dynamical properties of topological defects in a twodimensional complex
vector field are considered. These objects naturally arise in the study of
polarized transverse light waves. Dynamics is modeled by a Vector Complex
Ginzburg-Landau Equation with parameter values appropriate for linearly
polarized laser emission. Creation and annihilation processes, and
selforganization of defects in lattice structures, are described. We find
"glassy" configurations dominated by vectorial defects and a melting process
associated to topological-charge unbinding.Comment: 4 pages, 5 figures included in the text. To appear in Phys. Rev.
Lett. (2000). Related material at http://www.imedea.uib.es/Nonlinear and
http://www.imedea.uib.es/Photonics . In this new version, Fig. 3 has been
replaced by a better on
Spontaneous light-mediated magnetism in cold atoms
Cold atom setups are now commonly employed in simulations of condensed matter phenomena. We present a novel approach to induce strong magnetic interactions between atoms on a self-organized lattice using diffraction of light. Diffractive propagation of structured light fields leads to an exchange between phase and amplitude modulated planes which can be used to couple atomic degrees of freedom via optical pumping nonlinearities. In the experiment a cold cloud of Rb atoms placed near a retro-reflecting mirror is driven by a detuned pump laser. We demonstrate spontaneous magnetic ordering in the Zeeman sublevels of the atomic ground state: anti-ferromagnetic structures on a square lattice and ferrimagnetic structures on a hexagonal lattice in zero and a weak longitudinal magnetic field, respectively. The ordered state is destroyed by a transverse magnetic field via coherent dynamics. A connection to the transverse (quantum) Ising model is drawn
Manipulation and removal of defects in spontaneous optical patterns
Defects play an important role in a number of fields dealing with ordered
structures. They are often described in terms of their topology, mutual
interaction and their statistical characteristics. We demonstrate theoretically
and experimentally the possibility of an active manipulation and removal of
defects. We focus on the spontaneous formation of two-dimensional spatial
structures in a nonlinear optical system, a liquid crystal light valve under
single optical feedback. With increasing distance from threshold, the
spontaneously formed hexagonal pattern becomes disordered and contains several
defects. A scheme based on Fourier filtering allows us to remove defects and to
restore spatial order. Starting without control, the controlled area is
progressively expanded, such that defects are swept out of the active area.Comment: 4 pages, 4 figure
Macroscopic quantum fluctuations in noise-sustained optical patterns
We investigate quantum effects in pattern formation for a degenerate optical parametric oscillator with walk-off. This device has a convective regime in which macroscopic patterns are both initiated and sustained by quantum noise. Familiar methods based on linearization about a pseudoclassical field fail in this regime and new approaches are required. We employ a method in which the pump field is treated as a c-number variable but is driven by the c-number representation of the quantum subharmonic signal field. This allows us to include the effects of the fluctuations in the signal on the pump, which in turn act back on the signal. We find that the nonclassical effects, in the form of squeezing, survive just above the threshold of the convective regime. Further, above threshold, the macroscopic quantum noise suppresses these effects
General Stability Analysis of Synchronized Dynamics in Coupled Systems
We consider the stability of synchronized states (including equilibrium
point, periodic orbit or chaotic attractor) in arbitrarily coupled dynamical
systems (maps or ordinary differential equations). We develop a general
approach, based on the master stability function and Gershgorin disc theory, to
yield constraints on the coupling strengths to ensure the stability of
synchronized dynamics. Systems with specific coupling schemes are used as
examples to illustrate our general method.Comment: 8 pages, 1 figur
Effect of noise on coupled chaotic systems
Effect of noise in inducing order on various chaotically evolving systems is
reviewed, with special emphasis on systems consisting of coupled chaotic
elements. In many situations it is observed that the uncoupled elements when
driven by identical noise, show synchronization phenomena where chaotic
trajectories exponentially converge towards a single noisy trajectory,
independent of the initial conditions. In a random neural network, with
infinite range coupling, chaos is suppressed due to noise and the system
evolves towards a fixed point. Spatiotemporal stochastic resonance phenomenon
has been observed in a square array of coupled threshold devices where a
temporal characteristic of the system resonates at a given noise strength. In a
chaotically evolving coupled map lattice with logistic map as local dynamics
and driven by identical noise at each site, we report that the number of
structures (a structure is a group of neighbouring lattice sites for whom
values of the variable follow certain predefined pattern) follow a power-law
decay with the length of the structure. An interesting phenomenon, which we
call stochastic coherence, is also reported in which the abundance and
lifetimes of these structures show characteristic peaks at some intermediate
noise strength.Comment: 21 page LaTeX file for text, 5 Postscript files for figure
- …