338 research outputs found

    Remote Sensing Data Assimilation in Dynamic Crop Models Using Particle Swarm Optimization

    Get PDF
    A growing world population, increasing prosperity in emerging countries, and shifts in energy and food demands necessitate a continuous increase in global agricultural production. Simultaneously, risks of extreme weather events and a slowing productivity growth in recent years has caused concerns about meeting the demands in the future. Crop monitoring and timely yield predictions are an important tool to mitigate risk and ensure food security. A common approach is to combine the temporal simulation of dynamic crop models with a geospatial component by assimilating remote sensing data. To ensure reliable assimilation, handling of uncertainties in both models and the assimilated input data is crucial. Here, we present a new approach for data assimilation using particle swarm optimization (PSO) in combination with statistical distance metrics that allow for flexible handling of model and input uncertainties. We explored the potential of the newly proposed method in a case study by assimilating canopy cover (CC) information, obtained from Sentinel-2 data, into the AquaCrop-OS model to improve winter wheat yield estimation on the pixel- and field-level and compared the performance with two other methods (simple updating and extended Kalman filter). Our results indicate that the performance of the new method is superior to simple updating and similar or better than the extended Kalman filter updating. Furthermore, it was particularly successful in reducing bias in yield estimation

    Shortâ TR, Coherent, Gradient Echo Imaging

    Full text link
    When a spin system is repeatedly disturbed by a fast repetition of RF pulses, the transverse magnetization after each new RF pulse approaches a steadyâ state value which is smaller than the thermal equilibrium value. The spin system takes a finite number of pulses before this steadyâ state is reached in a time that depends on both the T1 of the tissue and the flip angle of the RF pulse. The focus of this unit is on understanding the buildâ up of the magnetization to steadyâ state and the practical implementation of the simplest forms of imaging in the steadyâ state. Sequences utilizing a steadyâ state approach can be broadly classified as steadyâ state coherent (SSC) and steadyâ state incoherent (SSI) sequences. The SSC behavior is the subject of this unit.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145400/1/cpmib0502.pd

    Studies on charge production from Cs2Te photocathodes in the PITZ L-band normal conducting radio frequency photo injector

    Full text link
    This paper discusses the behavior of electron bunch charge produced in an L-band normal conducting radio frequency cavity (RF gun) from Cs2Te photocathodes illuminated with ps-long UV laser pulses when the laser transverse distribution consists of a flat-top core with Gaussian-like decaying halo. The produced charge shows a linear dependence at low laser pulse energies as expected in the quantum efficiency limited emission regime, while its dependence on laser pulse energy is observed to be much weaker for higher values, due to space charge limited emission. However, direct plug-in of experimental parameters into the space charge tracking code ASTRA yields lower output charge in the space charge limited regime compared to measured values. The rate of increase of the produced charge at high laser pulse energies close to the space charge limited emission regime seems to be proportional to the amount of halo present in the radial laser profile since the charge from the core has saturated already. By utilizing core + halo particle distributions based on measured radial laser profiles, ASTRA simulations and semi-analytical emission models reproduce the behavior of the measured charge for a wide range of RF gun and laser operational parameters within the measurement uncertainties.Comment: 15 pages, 16 figures, 2 table

    Clinical aspects of Mayer-Rokitansky-Kuester-Hauser syndrome: recommendations for clinical diagnosis and staging

    Get PDF
    BACKGROUND: The Mayer-Rokitansky-Kuester-Hauser (MRKH) syndrome is a malformation of the female genitals (occurring in one in 4000 female live births) as a result of interrupted embryonic development of the Müllerian (paramesonephric) ducts. This retrospective study examined the issue of associated malformations, subtyping, and the frequency distribution of subtypes in MRKH syndrome. METHODS: Fifty-three MRKH patients were investigated using a newly developed standardized questionnaire. Together with the results of clinical and diagnostic examinations, the patients were classified into the three recognized subtypes [typical, atypical and MURCS (Müllerian duct aplasia, renal aplasia, and cervicothoracic somite dysplasia)]. RESULTS: The typical form was diagnosed in 25 patients (47%), the atypical form in 11 patients (21%), and the most marked form—the MURCS type—in 17 patients (32%). Associated malformations were notably frequent among the patients. Malformations of the renal system were the most frequent type of accompanying malformation, with 23 different malformations in 19 patients, followed by 18 different skeletal changes in 15 patients. CONCLUSIONS: In accordance with the literature, this study shows that associated malformations are present in more than a third of cases. Therefore, new basic guidelines for standard diagnostic classification involving patients with suspected MRKH are presente

    Emittance Reduction of RF Photoinjector Generated Electron Beams by Transverse Laser Beam Shaping

    Get PDF
    Laser pulse shaping is one of the key elements to generate low emittance electron beams with RF photoinjectors. Ultimately high performance can be achieved with ellipsoidal laser pulses, but 3-dimensional shaping is challenging. High beam quality can also be reached by simple transverse pulse shaping, which has demonstrated improved beam emittance compared to a transversely uniform laser in the 'pancake' photoemission regime. In this contribution we present the truncation of a Gaussian laser at a radius of approximately one sigma in the intermediate (electron bunch length directly after emission about the same as radius) photoemission regime with high acceleration gradients (up to 60 MV/m). This type of electron bunch is used e.g. at the European XFEL and FLASH free electron lasers at DESY, Hamburg site and is being investigated in detail at the Photoinjector Test facility at DESY in Zeuthen (PITZ). Here we present ray-tracing simulations and experimental data of a laser beamline upgrade enabling variable transverse truncation. Initial projected emittance measurements taken with help of this setup are shown, as well as supporting beam dynamics simulations. Additional simulations show the potential for substantial reduction of slice emittance at PITZ. © Published under licence by IOP Publishing Ltd

    Nuclear inclusions of pathogenic ataxin-1 induce oxidative stress and perturb the protein synthesis machinery

    Get PDF
    Spinocerebellar ataxia type-1 (SCA1) is caused by an abnormally expanded polyglutamine (polyQ) tract in ataxin-1. These expansions are responsible for protein misfolding and self-assembly into intranuclear inclusion bodies (IIBs) that are somehow linked to neuronal death. However, owing to lack of a suitable cellular model, the downstream consequences of IIB formation are yet to be resolved. Here, we describe a nuclear protein aggregation model of pathogenic human ataxin-1 and characterize IIB effects. Using an inducible Sleeping Beauty transposon system, we overexpressed the ATXN1(Q82) gene in human mesenchymal stem cells that are resistant to the early cytotoxic effects caused by the expression of the mutant protein. We characterized the structure and the protein composition of insoluble polyQ IIBs which gradually occupy the nuclei and are responsible for the generation of reactive oxygen species. In response to their formation, our transcriptome analysis reveals a cerebellum-specific perturbed protein interaction network, primarily affecting protein synthesis. We propose that insoluble polyQ IIBs cause oxidative and nucleolar stress and affect the assembly of the ribosome by capturing or down-regulating essential components. The inducible cell system can be utilized to decipher the cellular consequences of polyQ protein aggregation. Our strategy provides a broadly applicable methodology for studying polyQ diseases

    Hereditary renal adysplasia, pulmonary hypoplasia and Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hereditary renal adysplasia is an autosomal dominant trait with incomplete penetrance and variable expression that is usually associated with malformative combinations (including Müllerian anomalies) affecting different mesodermal organs such as the heart, lung, and urogenital system.</p> <p>Case report</p> <p>A case showing pulmonary hypoplasia, hip dysplasia, hereditary renal adysplasia, and Mayer-Rokitansky-Kuster-Hauser syndrome in adulthood is reported here. The i.v. pyelography showed right renal agenesis with a normal left kidney and ureter. Ultrasound and Magnetic Resonance Imaging also showed right renal agenesis with multicystic embryonary remnants in the right hemipelvis probably corresponding to a dysgenetic kidney. An uretrocystoscopy showed absence of ectopic ureter and of the right hemitrigone. She was scheduled for a diagnostic laparoscopy and creation of a neovagina according to the McIndoe technique with a prosthesis and skin graft. Laparoscopy confirmed the absence of the uterus. On both sides, an elongated, solid, rudimentary uterine horn could be observed. Both ovaries were also elongated, located high in both abdominal flanks and somewhat dysgenetics. A conventional cytogenetic study revealed a normal female karyotype 46, XX at a level of 550 GTG bands. A CGH analysis was performed using a 244K oligoarray CGH detecting 11 copy number variants described as normal variants in the databases. The 17q12 and 22q11.21 microdeletions described in other MRKH patients were not present in this case. Four years after operation her evolution is normal, without symptoms and the neovagina is adequately functional. The geneticists have studied her family history and the pedigree of the family is shown.</p> <p>Conclusions</p> <p>We suggest that primary damage to the mesoderm (paraaxil, intermediate, and lateral) caused by mutations in a yet unidentified gene is responsible for: 1) skeletal dysplasia, 2) inappropriate interactions between the bronchial mesoderm and endodermal lung bud as well as between the blastema metanephric and ureteric bud, and eventually 3) Müllerian anomalies (peritoneal mesothelium) at the same level. These anomalies would be transmitted as an autosomal dominant trait with incomplete penetrance and variable expressivity.</p

    Clinical approach for the classification of congenital uterine malformations

    Get PDF
    A more objective, accurate and non-invasive estimation of uterine morphology is nowadays feasible based on the use of modern imaging techniques. The validity of the current classification systems in effective categorization of the female genital malformations has been already challenged. A new clinical approach for the classification of uterine anomalies is proposed. Deviation from normal uterine anatomy is the basic characteristic used in analogy to the American Fertility Society classification. The embryological origin of the anomalies is used as a secondary parameter. Uterine anomalies are classified into the following classes: 0, normal uterus; I, dysmorphic uterus; II, septate uterus (absorption defect); III, dysfused uterus (fusion defect); IV, unilateral formed uterus (formation defect); V, aplastic or dysplastic uterus (formation defect); VI, for still unclassified cases. A subdivision of these main classes to further anatomical varieties with clinical significance is also presented. The new proposal has been designed taking into account the experience gained from the use of the currently available classification systems and intending to be as simple as possible, clear enough and accurate as well as open for further development. This proposal could be used as a starting point for a working group of experts in the field
    corecore