39 research outputs found

    Telomerase activity and telomere length in primary and metastatic tumors from pediatric bone cancer patients

    Get PDF
    The presence of telomerase activity has been analyzed in almost all tumor types and tumor-derived cell lines. However, there are very few studies that focus on the presence of telomerase activity in bone tumors, and most of them report analysis on very few samples or bone-derived cell lines. The objective of this study was to analyze the telomere length and telomerase activity in primary tumors and metastatic lesions from pediatric osteosarcoma and Ewing's sarcoma patients. The presence of telomerase activity was analyzed by the telomeric repeat amplification protocol assay, and the telomere length was measured by Southern blot. Results were related to survival and clinical outcome. Telomerase activity was detected in 85% of the bone tumor metastases (100% Ewing's sarcomas and 75% osteosarcomas) but only in 12% of the primary tumors (11.1% osteosarcomas and 12.5% Ewing's sarcomas). Bone tumor tissues with telomerase activity had mean telomere lengths 3 kb shorter than those with no detectable telomerase activity (p = 0.041). The presence of telomerase activity was associated with survival (p = 0.009), and longer event-free survival periods were found in patients who lacked telomerase activity compared with those who had detectable telomerase activity levels in their tumor tissues (p = 0.037). The presence of longer telomeres in primary pediatric bone tumors than in metastases could be indicative of alternative mechanisms of lengthening of telomeres for their telomere maintenance rather than telomerase activity. Nevertheless, the activation of telomerase seems to be a crucial step in the malignant progression and acquisition of invasive capability of bone tumors

    Cortactin expression predicts poor survival in laryngeal carcinoma

    Get PDF
    Amplification of the 11q13 region is one of the most frequent aberrations in squamous cell carcinomas of the head and neck region (HNSCC). Amplification of 11q13 has been shown to correlate with the presence of lymph node metastases and decreased survival. The 11q13.3 amplicon carries numerous genes including cyclin D1 and cortactin. Recently, we reported that FADD becomes overexpressed upon amplification and that FADD protein expression predicts for lymph node positivity and disease-specific mortality. However, the gene within the 11q13.3 amplicon responsible for this correlation is yet to be identified. In this paper, we compared, using immunohistochemical analysis for cyclin D1, FADD and cortactin in a series of 106 laryngeal carcinomas which gene correlates best with lymph node metastases and increased disease-specific mortality. Univariate Cox regression analysis revealed that high expression of cyclin D1 (P=0.016), FADD (P=0.003) and cortactin (P=0.0006) predict for increased risk to disease-specific mortality. Multivariate Cox analysis revealed that only high cortactin expression correlates with disease-specific mortality independent of cyclin D1 and/or FADD. Of genes located in the 11q13 amplicon, cortactin expression is the best predictor for shorter disease-specific survival in late stage laryngeal carcinomas

    The bone morphogenetic protein antagonist gremlin 1 is overexpressed in human cancers and interacts with YWHAH protein

    Get PDF
    BACKGROUND: Basic studies of oncogenesis have demonstrated that either the elevated production of particular oncogene proteins or the occurrence of qualitative abnormalities in oncogenes can contribute to neoplastic cellular transformation. The purpose of our study was to identify an unique gene that shows cancer-associated expression, and characterizes its function related to human carcinogenesis. METHODS: We used the differential display (DD) RT-PCR method using normal cervical, cervical cancer, metastatic cervical tissues, and cervical cancer cell lines to identify genes overexpressed in cervical cancers and identified gremlin 1 which was overexpressed in cervical cancers. We determined expression levels of gremlin 1 using Northern blot analysis and immunohistochemical study in various types of human normal and cancer tissues. To understand the tumorigenesis pathway of identified gremlin 1 protein, we performed a yeast two-hybrid screen, GST pull down assay, and immunoprecipitation to identify gremlin 1 interacting proteins. RESULTS: DDRT-PCR analysis revealed that gremlin 1 was overexpressed in uterine cervical cancer. We also identified a human gremlin 1 that was overexpressed in various human tumors including carcinomas of the lung, ovary, kidney, breast, colon, pancreas, and sarcoma. PIG-2-transfected HEK 293 cells exhibited growth stimulation and increased telomerase activity. Gremlin 1 interacted with homo sapiens tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, eta polypeptide (14-3-3 eta; YWHAH). YWHAH protein binding site for gremlin 1 was located between residues 61–80 and gremlin 1 binding site for YWHAH was found to be located between residues 1 to 67. CONCLUSION: Gremlin 1 may play an oncogenic role especially in carcinomas of the uterine cervix, lung, ovary, kidney, breast, colon, pancreas, and sarcoma. Over-expressed gremlin 1 functions by interaction with YWHAH. Therefore, Gremlin 1 and its binding protein YWHAH could be good targets for developing diagnostic and therapeutic strategies against human cancers

    Increased Lysis of Stem Cells but Not Their Differentiated Cells by Natural Killer Cells; De-Differentiation or Reprogramming Activates NK Cells

    Get PDF
    The aims of this study are to demonstrate the increased lysis of stem cells but not their differentiated counterparts by the NK cells and to determine whether disturbance in cell differentiation is a cause for increased sensitivity to NK cell mediated cytotoxicity. Increased cytotoxicity and augmented secretion of IFN-γ were both observed when PBMCs or NK cells were co-incubated with primary UCLA oral squamous carcinoma stem cells (UCLA-OSCSCs) when compared to differentiated UCLA oral squamous carcinoma cells (UCLA-OSCCs). In addition, human embryonic stem cells (hESCs) were also lysed greatly by the NK cells. Moreover, NK cells were found to lyse human Mesenchymal Stem Cells (hMSCs), human dental pulp stem cells (hDPSCs) and human induced pluripotent stem cells (hiPSCs) significantly more than their differentiated counterparts or parental lines from which they were derived. It was also found that inhibition of differentiation or reversion of cells to a less-differentiated phenotype by blocking NFκB or targeted knock down of COX2 in monocytes significantly augmented NK cell cytotoxicity and secretion of IFN-γ. Taken together, these results suggest that stem cells are significant targets of the NK cell cytotoxicity. However, to support differentiation of a subset of tumor or healthy untransformed primary stem cells, NK cells may be required to lyse a number of stem cells and/or those which are either defective or incapable of full differentiation in order to lose their cytotoxic function and gain the ability to secrete cytokines (split anergy). Therefore, patients with cancer may benefit from repeated allogeneic NK cell transplantation for specific elimination of cancer stem cells

    Regulation of hTERT by BCR-ABL at multiple levels in K562 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cytogenetic characteristic of Chronic Myeloid Leukemia (CML) is the formation of the Philadelphia chromosome gene product, BCR-ABL. Given that BCR-ABL is the specific target of Gleevec in CML treatment, we investigated the regulation of the catalytic component of telomerase, hTERT, by BCR-ABL at multiple levels in K562 cells.</p> <p>Methods</p> <p>Molecular techniques such as over expression, knockdown, real-time PCR, immunoprecipitation, western blotting, reporter assay, confocal microscopy, telomerase assays and microarray were used to suggest that hTERT expression and activity is modulated by BCR-ABL at multiple levels.</p> <p>Results</p> <p>Our results suggest that BCR-ABL plays an important role in regulating hTERT in K562 (BCR-ABL positive human leukemia) cells. When Gleevec inhibited the tyrosine kinase activity of BCR-ABL, phosphorylation of hTERT was downregulated, therefore suggesting a positive correlation between BCR-ABL and hTERT. Gleevec treatment inhibited <it>hTERT </it>at mRNA level and significantly reduced telomerase activity (TA) in K562 cells, but not in HL60 or Jurkat cells (BCR-ABL negative cells). We also demonstrated that the transcription factor STAT5a plays a critical role in <it>hTERT </it>gene regulation in K562 cells. Knockdown of STAT5a, but not STAT5b, resulted in a marked downregulation of <it>hTERT </it>mRNA level, TA and hTERT protein level in K562 cells. Furthermore, translocation of hTERT from nucleoli to nucleoplasm was observed in K562 cells induced by Gleevec.</p> <p>Conclusions</p> <p>Our data reveal that BCR-ABL can regulate TA at multiple levels, including transcription, post-translational level, and proper localization. Thus, suppression of cell growth and induction of apoptosis by Gleevec treatment may be partially due to TA inhibition. Additionally, we have identified STAT5a as critical mediator of the <it>hTERT </it>gene expression in BCR-ABL positive CML cells, suggesting that targeting STAT5a may be a promising therapeutic strategy for BCR-ABL positive CML patients.</p

    Neoadjuvant in situ gene-mediated cytotoxic immunotherapy improves postoperative outcomes in novel syngeneic esophageal carcinoma models

    Get PDF
    Esophageal carcinoma is the most rapidly increasing tumor in the United States and has a dismal 15% 5-year survival. Immunotherapy has been proposed to improve patient outcomes; however, no immunocompetent esophageal carcinoma model exists to date to test this approach. We developed two mouse models of esophageal cancer by inoculating immunocompetent mice with syngeneic esophageal cell lines transformed by cyclin-D1 or mutant HRASG12V and loss of p53. Similar to humans, surgery and adjuvant chemotherapy (cisplatin and 5-fluorouracil) demonstrated limited efficacy. Gene-mediated cyototoxic immunotherapy (adenoviral vector carrying the herpes simplex virus thymidine kinase gene in combination with the prodrug ganciclovir; AdV-tk/GCV) demonstrated high levels of in vitro transduction and efficacy. Using in vivo syngeneic esophageal carcinoma models, combining surgery, chemotherapy and AdV-tk/GCV improved survival (P=0.007) and decreased disease recurrence (P<0.001). Mechanistic studies suggested that AdV-tk/GCV mediated a direct cytotoxic effect and an increased intra-tumoral trafficking of CD8 T cells (8.15% vs 14.89%, P=0.02). These data provide the first preclinical evidence that augmenting standard of care with immunotherapy may improve outcomes in the management of esophageal carcinoma

    A single dividing cell population with imbalanced fate drives oesophageal tumour growth.

    Get PDF
    Understanding the cellular mechanisms of tumour growth is key for designing rational anticancer treatment. Here we used genetic lineage tracing to quantify cell behaviour during neoplastic transformation in a model of oesophageal carcinogenesis. We found that cell behaviour was convergent across premalignant tumours, which contained a single proliferating cell population. The rate of cell division was not significantly different in the lesions and the surrounding epithelium. However, dividing tumour cells had a uniform, small bias in cell fate so that, on average, slightly more dividing than non-dividing daughter cells were generated at each round of cell division. In invasive cancers induced by Kras(G12D) expression, dividing cell fate became more strongly biased towards producing dividing over non-dividing cells in a subset of clones. These observations argue that agents that restore the balance of cell fate may prove effective in checking tumour growth, whereas those targeting cycling cells may show little selectivity.Cancer Research UK (Grant ID: C609/A17257), Medical Research Council (Grant-in-Aid), DFG (Research Fellowship), Engineering and Physical Sciences Research Council (Critical Mass Grant), Wellcome Trust (Grant ID: 098357/Z/12/Z)This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ncb340
    corecore