14 research outputs found

    Reservoir cells no longer detectable after a heterologous SHIV challenge with the synthetic HIV-1 Tat Oyi vaccine

    Get PDF
    BACKGROUND: Extra-cellular roles of Tat might be the main cause of maintenance of HIV-1 infected CD4 T cells or reservoir cells. We developed a synthetic vaccine based on a Tat variant of 101 residues called Tat Oyi, which was identified in HIV infected patients in Africa who did not progress to AIDS. We compared, using rabbits, different adjuvants authorized for human use to test on ELISA the recognition of Tat variants from the five main HIV-1 subtypes. A formulation was tested on macaques followed by a SHIV challenge with a European strain. RESULTS: Tat Oyi with Montanide or Calcium Phosphate gave rabbit sera able to recognize all Tat variants. Five on seven Tat Oyi vaccinated macaques showed a better control of viremia compared to control macaques and an increase of CD8 T cells was observed only on Tat Oyi vaccinated macaques. Reservoir cells were not detectable at 56 days post-challenge in all Tat Oyi vaccinated macaques but not in the controls. CONCLUSION: The Tat Oyi vaccine should be efficient worldwide. No toxicity was observed on rabbits and macaques. We show in vivo that antibodies against Tat could restore the cellular immunity and make it possible the elimination of reservoir cells

    HIV-1 Vif binds to APOBEC3G mRNA and inhibits its translation

    Get PDF
    The HIV-1 viral infectivity factor (Vif) allows productive infection of non-permissive cells (including most natural HIV-1 targets) by counteracting the cellular cytosine deaminases APOBEC-3G (hA3G) and hA3F. The Vif-induced degradation of these restriction factors by the proteasome has been extensively studied, but little is known about the translational repression of hA3G and hA3F by Vif, which has also been proposed to participate in Vif function. Here, we studied Vif binding to hA3G mRNA and its role in translational repression. Filter binding assays and fluorescence titration curves revealed that Vif tightly binds to hA3G mRNA. Vif overall binding affinity was higher for the 3′UTR than for the 5′UTR, even though this region contained at least one high affinity Vif binding site (apparent Kd = 27 ± 6 nM). Several Vif binding sites were identified in 5′ and 3′UTRs using RNase footprinting. In vitro translation evidenced that Vif inhibited hA3G translation by two mechanisms: a main time-independent process requiring the 5′UTR and an additional time-dependent, UTR-independent process. Results using a Vif protein mutated in the multimerization domain suggested that the molecular mechanism of translational control is more complicated than a simple physical blockage of scanning ribosomes

    Full-length HIV-1 Tat protein necessary for a vaccine

    No full text
    International audienceAIDS vaccines now use a truncated version of 86 residues of the Tat protein related to the HIV-1 HXB2 strain predominant in Europe and North America. We compared antibodies raised in rabbits using a B subtype short Tat HXB2(86) and a full-length Tat HXB2(100). Serum against HXB2(86) recognizes only B and D subtypes while serum against HXB2(100) recognizes B, D, and C subtype variants. Conformational epitopes appear to be involved in the capacity of anti-Tat HXB2 sera to recognized non-homologous Tat variants. A linear B-epitope identified in sequence 71-81 in HXB2(86) disappears in HXB2(100), which has a new linear B-epitope identified at the C-terminus. Anti-HXB2(100) serum has a higher titer in neutralizing antibody against homologous and non-homologous variants compared to anti-HXB2(86) serum. We suggest that a Tat vaccine should contain a Tat variant with regular size, up to 99-101 residues now found in the field

    Homonuclear 1 H-NMR assignment and structural characterization of human immunodeficiency virus type 1 Tat Mal protein

    No full text
    International audienceThe transacting transcriptional activator (Tat) is a viral protein essential for activation of the human immunodeficiency virus (HIV) genes, and it plays an important role in HIV induced immunodeficiency. We report the NMR structural characterization of the active Tat Mal variant that belongs to a highly virulent D-subtype HIV type-1 (HIV-1) strain (Mal) found mainly in Africa. A full Tat Mal protein (87 residues) is synthesized. This synthetic protein is active in a transactivation assay with HeLa cells infected with the HIV long terminal repeated noncoding sequences of the HIV-1 provirus (LTR) lac Z gene. Homonuclear (1)H-NMR spectra allows the sequential assignment of the Tat Mal spin systems. Simulating annealing generates 20 conformers with similar folding. The geometry of the mean structure is optimized with energy minimization to obtain a final structure. As the European variant (Tat Bru) the N-terminal region of Tat Mal constitutes the core, and there is a hydrophobic pocket composed of the conserved Trp 11 interacting with several aromatic residues. The two functional regions of Tat (basic and the cysteine-rich regions) are well exposed to the solvent. A short alpha-helix is observed in region V adjacent to the basic region. This alpha helix induces local structural variations compared to the NMR structure of Tat Bru, and it brings the cysteine-rich and basic regions closer. This study suggests that similar folding exists among Tat variants

    Structural recognition mechanisms between human Src homology domain 3 (SH3) and ALG-2-interacting protein X (Alix)

    Get PDF
    International audienceThe functions of Src family kinases are tightly regulated through Src homology (SH) domainmediated protein-protein interactions. We previously reported the biophysical characteristics of the apoptosis-linked gene 2-interacting protein X (Alix) in complex with the haemopoietic cell kinase (Hck) SH3 domain. In the current study, we have combined ITC, NMR, SAXS and molecular modeling to determine a 3D model of the complex. We demonstrate that Hck SH3 recognizes an extended linear proline-rich region of Alix. This particular binding mode enables Hck SH3 to sense a specific non-canonical residue situated in the SH3 RT-loop of the kinase. The resulting model helps clarify the mechanistic insights of Alix-Hck interaction

    A specific protein disorder catalyzer of HIV-1 Nef

    No full text
    International audienceThe HIV-1 auxiliary protein Nef is required for the onset and progression of AIDS in HIV-1-infected persons. Here, we have deciphered the mode of action of a second-generation inhibitor of Nef, DLC27-14, presenting a competitive IC50 o

    HIV-1 Tat protein enhances Microtubule polymerization

    No full text
    Abstract Background HIV infection and progression to AIDS is characterized by the depletion of T cells, which could be due, in part, to apoptosis mediated by the extra-cellular HIV-encoded Tat protein as a consequence of Tat binding to tubulin. Microtubules are tubulin polymers that are essential for cell structure and division. Molecules that target microtubules induce apoptosis and are potent anti-cancer drugs. We studied the effect on tubulin polymerization of three Tat variants: Tat HxB2 and Tat Eli from patients who are rapid progressors (RP) and Tat Oyi from highly exposed but persistently seronegative (HEPS) patients. We compared the effect on tubulin polymerization of these Tat variants and peptides corresponding to different parts of the Tat sequence, with paclitaxel, an anti-cancer drug that targets microtubules. Results We show that Tat, and specifically, residues 38–72, directly enhance tubulin polymerization. We demonstrate that Tat could also directly trigger the mitochondrial pathway to induce T cell apoptosis, as shown in vitro by the release of cytochrome c from isolated mitochondria. Conclusions These results show that Tat directly acts on microtubule polymerization and provide insights into the mechanism of T cell apoptosis mediated by extra-cellular Tat.</p

    A possible improvement for structure-based drug design illustrated by the discovery of a Tat HIV-1 inhibitor

    No full text
    International audienceThe HIV-1 Tat protein is a promising target for AIDS therapy, due to its extra-cellular roles against the immune system. From the 2D-NMR structure of Tat, we have designed molecules, called TDS, able to bind to Tat and inhibit HIV-1 replication in vitro. This new family of antivirals is composed of a triphenylene aromatic ring substituted with at least one carbon chain bearing a succinimide group. These ligands are prepared from triphenylene or 2,6,10-trimethylphenylene in 3-6 steps depending on the target molecule
    corecore