456 research outputs found

    Fast Permutation Tests that Maximize Power Under Conventional Monte Carlo Sampling for Pairwise and Multiple Comparisons

    Get PDF
    While the distribution-free nature of permutation tests makes them the most appropriate method for hypothesis testing under a wide range of conditions, their computational demands can be runtime prohibitive, especially if samples are not very small and/or many tests must be conducted (e.g. all pairwise comparisons). This paper presents statistical code that performs continuous-data permutation tests under such conditions very quickly often more than an order of magnitude faster than widely available commercial alternatives when many tests must be performed and some of the sample pairs contain a large sample. Also presented is an efficient method for obtaining a set of permutation samples containing no duplicates, thus maximizing the power of a pairwise permutation test under a conventional Monte Carlo approach with negligible runtime cost (well under 1% when runtimes are greatest). For multiple comparisons, the code is structured to provide an additional speed premium, making permutation-style p-value adjustments practical to use with permutation test p-values (although for relatively few comparisons at a time). No-replacement sampling also provides a power gain for such multiple comparisons, with similarly negligible runtime cost

    A Single, Powerful, Nonparametric Statistic for Continuous-data Telecommunications Parity Testing

    Get PDF
    Since the enactment of the Telecommunications Act of 1996, extensive expert testimony has justified use of the modified t statistic (Brownie et al., 1990) for performing two-sample hypothesis tests comparing Bell companies’ CLEC and ILEC performance measurement data (known as parity testing). However, Opdyke (Telecommunications Policy, 2004) demonstrated this statistic to be potentially manipulable and to have literally zero power to detect inferior CLEC service provision under a wide range of relevant data conditions. This article develops a single, nonparametric statistic that is easily implemented (i.e., not computationally intensive) and typically provides dramatic power gains over the modified t while simultaneously providing much better Type I error control. The statistic should be useful in a wide range of quality control settings

    Plio-Pleistocene time-averaged field in southern Patagonia recorded in lava flows

    Get PDF
    Paleomagnetic directions were obtained from stepwise alternating-field or thermal demagnetization of 53 lava flows from southern Patagonia (latitudes 49.5°-52.1 °S) that include the Pali-Aike volcanic field and the Meseta Viscachas plateau lavas. In addition to previous Miocene-late Quaternary ages of these flows, 40Ar/39Ar dates spanning from 0.1 to 15.4 Ma were obtained for 17 of the sites. All except one of the magnetic polarities coincide with the expected polarities of the magnetic polarity timescale [Cande and Kent, 1995] for the obtained 40Ar/39Ar ages. The mean direction from 33 sites (eliminating sites <4 Ma) that pass a selection criteria of α95 ≤5° is Dec = 358.7°,Inc = - 68.2°, α95 = 3.5°, a value that coincides within the statistical uncertainty with the direction of the geocentric axial dipole for that area (Inc = - 68.1°). Likewise, the mean virtual geomagnetic pole (VGP) coincides within the statistical uncertainty with the geographic North Pole. The secular variation described by the VGP angular standard deviation for these sites is 17.1°, a value expected for that latitude according to Model G of paleosecular variation [McFadden et al., 1988]. The characteristics of the data presented are optimum for time-averaged field (TAF) studies because of the good age control and good quality of the paleomagnetic data: (1) primary components of magnetization were obtained using principal component analysis [Kirschvink, 1980] from at least five points and maximum angular deviation ≤5°, (2) site means were calculated with Fisher statistics using at least three samples, and (c) 38 of the 53 flows had α95 ≤ 5°. No results (five sites) or high α95 values (≤5°) were obtained primarily from sites affected by lightning.Fil: Mejia, V.. University of Florida; Estados UnidosFil: Opdyke, N. D.. University of Florida; Estados UnidosFil: Vilas, Juan Francisco A.. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Geología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Singer, B. S.. University of Wisconsin; Estados UnidosFil: Stoner, J. S.. State University of Colorado at Boulder; Estados Unido

    The Early Carboniferous paleomagnetic field of North America and its bearing on tectonics of the Northern Appalachians

    Get PDF
    We have obtained additional evidence for the Early Carboniferous paleomagnetic field for cratonic North America from study of the Barnett Formation of central Texas. A characteristic magnetization of this unit was isolated after thermal demagnetization at four sites (36 samples) out of eight sites (65 samples) collected. The mean direction of declination = 156.3°, inclination = 5.8° (N = 4 ,k = 905 , α95 = 3.0°), corresponds to a paleomagnetic pole position at lat. = 49.1°N,long. = 119.3°E (dp = 1.5° , dm = 3.0°). Field evidence suggests that characteristic magnetization was acquired very early in the history of the rock unit whereas the rejected sites are comprised of weakly magnetized limestones dominated by secondary components near the present-day field direction. Comparison of the Barnett pole with other Early Carboniferous (Mississippian) paleopoles from North America shows that it lies close to the apparent polar wander path for stable North America and that the divergence of paleopoles from the Northern Appalachians noted previously for the Devonian persisted into the Early Carboniferous. We interpret this difference in paleopoles as further evidence for the Northern Appalachian displaced terrain which we refer to here as Acadia, and the apparent coherence of Late Carboniferous paleopoles as indicating a large (∼1500 km) motion of Acadia with respect to stable North America over a rather short time interval in the Carboniferou
    corecore