48 research outputs found

    Development and Characterization of Photoinduced Acrylamide-Grafted Polylactide Films for Biomedical Applications

    Get PDF
    Surface grafting of biodegradable/biocompatible polylactide (PLA) films by a UV-assisted reaction has been developed by employing a hydrophilic acrylamide (Am) monomer, an N,N′-methylenebisacrylamide (MBAm) cross-linker, and a camphorquinone (CQ)/N,N′-dimethylaminoethylmethacrylate (DMAEMA) photoinitiator/coinitiator system. The accomplishment of the process is confirmed by FTIR and XPS analyses. Physicochemical changes of the grafted PLA films are evaluated in terms of chemical structures, radiation-induced degradation followed by crystallization, morphology, thermal properties, and mechanical behavior. The results reveal that a low degree of PLA degradation through chain scission is observed in both blank and grafted PLA films. This generates more polar chain ends that can further induce crystallization. Results from contact angle measurements indicate that the grafted films have higher hydrophilicity and pH-responsive behavior. The incorporation of PAm on the film’s surface and the induced crystallization lead to improvements in certain aspects of mechanical properties of the films. The materials have high potential for use in biomedical and environmental applications, such as cell culture substrates or scaffolds or pH-sensitive absorbents

    Fiber association and network formation in PLA/lignocellulosic fiber composites.

    Get PDF
    PLA composites were prepared in an internal mixer with a lignocellulosic fiber having relatively large aspect ratio. Fiber content changed between 0 and 60 vol% and the homogenized material was compression molded to 1 mm thick plates. The composites showed anomalous behavior above certain fiber content. Their modulus and especially their strength decreased drastically and modeling also proved the loss of reinforcement at large fiber contents. Micromechanical testing showed that the mechanism of deformation and failure changes at a critical fiber content. Microscopic analysis indi-cated the formation of a network purely from geometrical reasons. The inherent strength of the network is very small because of the weak forces acting among the fibers. This weak inherent strength makes the structure of the composites very sensitive to pro-cessing conditions, and decreases strength, reproducibility as well as reliability

    Preparation and properties of multi-branched poly(D-lactide) derived from polyglycidol and its stereocomplex blends

    No full text
    Multi-branched poly(D-lactide)s (mbPDLAs) with various structures are synthesized via ring-opening polymerization by using polyglycidol (PG) macro-initiators. Their chemical structures and thermal properties are controlled by adjusting feed ratios of D-lactide (DLA) and PG. The materials are blended with commercial linear poly(L-lactide)(l-PLLA) to form a stereocomplex structure. Effects of mbPDLAs structures and l-PLLA/mbPDLA ratios on the blends’ thermal, mechanical, and rheological properties are evaluated. Mechanical properties of the stereocomplex blends, especially elongation at break and toughness, are dependent on the blend compositions, in which a 90:10 ratio exhibits the most desirable properties. The material also exhibits the lowest complex viscosity, which provides easy processing conditions. This is achieved by the incorporation of copolymers with multi-branched structures and an ability to form a much stronger stereocomplex structure

    A Preliminary Review of Poly(lactic acid)-based Biodegradable Foam and its Techno-economic Model

    No full text
    Biodegradable polymers using renewable resources with properties that are comparable to bio-based and fossil-based polymer materials at a comparable cost have been studied and developed in an effort to solve environmental issues, especially expanded polystyrene. One potential raw main material to replace EPS is poly(lactic acid), a synthetic polymer made from lactic acid, which is made by fermenting organic materials like sweetcorn, rice, soya, potatoes, or whey. It is used in food and non-food packaging, drug-controlled release, agriculture, automotive, and electronic accessories. Foaming is vital in developing lighter, more cost-effective materials that may be utilized for a range of purposes due to their general features, such as lightweight, good heat, more ductile (elastic), and excellent energy absorption (impact resistance). In this review, different types of foaming processes and their process parameters are focused at. It was written following the procedures outlined in the PRISMA2020 (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines for conducting a review to reports and evaluating a wide variety of interventions. Furthermore, a sustainable material should focus on the efficacy of its resource consumption and the economic feasibility of the product it creates. An economic feasibility study is also provided in this article aims to evaluate how much profit a production plant can make. The techno-economic model developed in this study yielded a profit on sales of 69.69% and an internal rate of return of 44.0%. Techno-economic modeling favored the commercial use of poly(lactic acid)-based biodegradable foam based on its positive net present value, short payback period, and high internal rate of return

    Development of ammonia gas sensor based on Ni-doped reduce graphene oxide

    No full text
    The work aims to develop a simple and low cost ammonia gas sensor based on reduced graphene oxide (rGO). Reduced graphene oxide doped with nickel sulfate (NiSO4/rGO) was used as a sensing material. The sensor was fabricated by a simple drop-cast and spin-coat technique. The performance of the nickel-doped reduce graphene oxide were studied in terms of electrical changes as well as chemical interactions. It was found that after the fabricated sensor was exposed to ammonia vapour for 10 min, the average resistivity was increased to 43% from initial resistance and retained about 8% resistance change upon ammonia removal. The mechanism of the sensor reaction with the ammonia gas is also studied using Fourier Transform Infrared Spectroscopy (FTIR) and is discussed. This preliminary work may help develop the highly sensitive ammonia gas sensor

    Biodegradable porous micro/nanoparticles with thermoresponsive gatekeepers for effective loading and precise delivery of active compounds at the body temperature

    No full text
    International audienceAbstract Stimuli-responsive controlled delivery systems are of interest for preventing premature leakages and ensuring precise releases of active compounds at target sites. In this study, porous biodegradable micro/nanoparticles embedded with thermoresponsive gatekeepers are designed and developed based on Eudragit RS100 (PNIPAM@RS100) and poly(N-isopropylacrylamide) via a double emulsion solvent evaporation technique. The effect of initiator types on the polymerization of NIPAM monomer/methylene-bis-acrylamide (MBA) crosslinker was investigated at 60 °C for thermal initiators and ambient temperature for redox initiators. The crosslinked PNIPAM plays a key role as thermal-triggered gatekeepers with high loading efficiency and precise release of a model active compound, Nile Blue A (NB). Below the volume phase transition temperature (T VPT ), the gatekeepers possess a swollen conformation to block the pores and store NB within the cavities. Above its T VPT , the chains rearrange, allowing gate opening and a rapid and constant release rate of the compound until completion. A precise “on–off” switchable release efficiency of PNIPAM@RS100 was demonstrated by changing the temperatures to 4 and 40 °C. The materials are a promising candidate for controlled drug delivery systems with a precise and easy triggering mechanism at the body temperature for effective treatments

    Development of ammonia gas sensor based on Ni-doped reduce graphene oxide

    No full text
    The work aims to develop a simple and low cost ammonia gas sensor based on reduced graphene oxide (rGO). Reduced graphene oxide doped with nickel sulfate (NiSO4/rGO) was used as a sensing material. The sensor was fabricated by a simple drop-cast and spin-coat technique. The performance of the nickel-doped reduce graphene oxide were studied in terms of electrical changes as well as chemical interactions. It was found that after the fabricated sensor was exposed to ammonia vapour for 10 min, the average resistivity was increased to 43% from initial resistance and retained about 8% resistance change upon ammonia removal. The mechanism of the sensor reaction with the ammonia gas is also studied using Fourier Transform Infrared Spectroscopy (FTIR) and is discussed. This preliminary work may help develop the highly sensitive ammonia gas sensor
    corecore